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Project Goals: Our project focuses on identifying the role of electric dominance ( ) in the early stages of particle acceleration in relativistic magnetic reconnection with vanishing guide 
fields. This is relevant to address the question of how particles are ‘injected’ into later stage non-thermal acceleration (denoted the injection problem) by ideal fields. Such non thermal particles 

play a key role in determining the observables from the magnetospheres of black holes and neutron stars.

E > B

Conclusions and Next Steps 
• Injection through regions with electric dominance is necessary to further, late-stage acceleration by 

ideal fields 
• Electrically dominant regions more significantly contribute to energization for higher σ 
• Particles encountering E > B fields populate the high-energy end of the spectrum 

• We hope to see whether these trends persist in the 3D case

Feeling the pull and the pulse 
of relativistic magnetospheres 
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Magnetic Reconnection 
• Reconnection (Fig. 1): 

breaking and rearranging of 
oppositely directed magnetic 
fields 
• is known to heat particles 

and accelerate them to 
nonthermal distributions 

• Nonthermal particles can be 
generated in relativistic 
reconnection with σ  1 
(magnetisation parameter) 

 

We focus on a guide field 
( ) of 0 for our analysis. 
This work is done using 
relativistic particle-in-cell (PIC) 
simulations.
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Figure 1: Schematic diagram of 
magnetic reconnection (Chen 2020)

Figure 3: Physical quantities of the reconnection layer during 
the steady state – [a] particle density; [b] ideal fields; [c] 

non-ideal fields; [d] ; [e] χ = (E2 − B2)/(E2 + B2) |EN|/|EI|

Figure 4: Average fractional E > B contribution to particle energization for three magnetizations, σ = 12,50,200 over 
three different time ranges for periodic (dashed) and outflow (solid) boundaries up to assumed threshold energy σ/4

Figure 5: Energy distribution curves for σ = 12,50,200. [Left] Solid curves correspond 
correspond to the energy acquired in E>B regions; dotted black curves show best fit 

(equation to right); [Right] coloured dashed and dotted curves show their total energy 
distribution, , for all and energized (E>B) particles, respectivelyγ − 1

The fractional contribution of particle accelerated by E > B regions is dependant on both σ and 
the type of boundary, both of which are important in understanding the injection problem.

Increase in width of 
spectra and higher 
maximum energy 
obtained by particles 
for larger σ 

Best Fit: 

where , 
B = -0.35, D = 0.5
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Figure 4: 
Reconnection 

rate (in units of 
Alfvenic speed) 
for three σ for 

periodic 
(dashed) and 

outflow (solid) 
boundaries 
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