

A kinetic model of jet-corona coupling in accreting black holes John Mehlhaff,^{1,2†} Benoît Cerutti,¹ Benjamin Crinquand^{3,4}

Context

- Black hole (BH) accretion disk coronae may emit high-energy radiation and influence BH jet production, as suggested, e.g., by concomitant radio ejections and X-ray flaring in BH X-ray binaries [1]
- Reconnection is a likely essential mechanism for both powering the coronal emission [2] and regulating jet formation [3] – Only kinetic plasma physics captures both particle acceleration and the true reconnection rate, allowing a reliable link between reconnection-powered high-energy radiation and reconnectionregulated jet production.
- We aim to elucidate this link via a global kinetic model of a BH feeding on its accretion disk corona.

- Rotational shear inflates loops and opens field lines - Reconnection closes field lines back up, setting balance between open/closed flux bundles
- BH unties loops, ejecting them towards infinity
- Loop accretion and ejection cycles dominate energy
- budget and radiative signatures

¹Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France ²Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis; MO, 63130, USA; [†]mehlhaff@wustl.edu ³IRAP, Université de Toulouse, CNRS, CNES, UPS, 14 avenue Edouard Belin, 31400 Toulouse, France ⁴Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

Integrate Poynting's theorem across simulation domain (left-hand figure) reconnection $(\dot{\mathcal{E}}_{J,E})$, and rate-of-change of field energy $(\dot{\mathcal{E}}_{EMfields}; middle figure)$ All quantities vary on loop accretion and ejection period $(1000r_q/c)$ – Dissipation peaks as reconnection whittles down jet-funnel magnetic flux

- - (\mathbf{a})
 - (b) state transitions 1

- All observers see one bright and one dark period per processed loop (a)
- (b)

Energy budget

- Extract time series of Poynting power injected by disk plus BH ($\mathcal{E}_{inj,Poynt}$), outflowing Poynting power ($\mathcal{E}_{out,Poynt}$), dissipation by
- Compare to time series of total, open (BH-Inf), and disk-connected (BH-Disk) magnetic flux threading BH (middle figure)
- **Reconnection efficiently dissipates Poynting power**: consumes $\simeq 1/3$ of time-averaged energy budget (right-hand table)

Radiative signatures

Conclusions

1. Magnetic reconnection links jet launch to high-energy emission in BH accretion disk coronae Reconnection preys on the jet funnel and can eject the flux initially tied to the BH This may explain correlated radio ejections and X-ray flares frequently seen during X-ray binary

2. Reconnection efficiently converts jet Poynting power into particle kinetic energy

(a) Already $\simeq 1/3$ of energy budget dissipated within simulation. Expect to continue to larger radii 3. Loop accretion and ejection cycles lead to dramatic radiative signatures

Privileged current-sheet-aligned observers witness enhanced, exceptionally rapid ($\sim r_q/c$) variability

WWW	Time-averaged terms in Poynting's theorem	
MAA		$\langle \dot{\mathcal{E}} angle / \langle \dot{\mathcal{E}}_{ ext{inj,Poynt}} angle$
ıal	$\langle \dot{\mathcal{E}}_{\mathrm{inj,Poynt}} angle$	1.00
	$\langle \dot{\mathcal{E}}_{\mathrm{out,Poynt}} angle$	0.64
	$\langle \dot{\mathcal{E}}_{\mathrm{E.J}} angle$	0.36
tal	$\langle \dot{\mathcal{E}}_{\mathrm{EMfields}} angle$	0.00
)	Residual	0.00

- Ray-trace [5] synchrotron photons to far-away observers - Vary observer inclination angle, i, from BH spin axis - All observers see alternating bright/dark periods on loop

Bright periods powered by vigorous jet-wall reconnection Current-sheet-aligned observers $(i = 40.5^{\circ})$ witness Doppler-enhanced variability down to timescales $\sim r_q/c$

Ejection of magnetic flux heralded by bright

