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Astrophysical Context Numerical Context and Motivations

» Current radiative transfer codes mainly focus on semi-analytical or
phenomenological models for the hot plasma.

» There is currently no way to extract complex Compton signatures from
global general relativistic PIC simulations.

» We aim to fill that gap by developing a Comptonization code that can

handle arbitrary electron distributions in Kerr spacetime.

® We develop a code that can handle distributions from PIC simulations
® With compatibility on CPU and GPU

» Accretion disks in X-ray binaries show non-thermal emission.

» Hard X-ray emission is commonly interpreted as Comptonization of soft
photon by energetic electrons.

» The emission properties are strongly connected to both the
microphysics of the energization and radiation mechanism, as well as
the global geometry of the system

» IXPE images provide measurements of polarization which can help
constraining the geometries of coronae.

. Compton Diffusion — Energy spectrums II. Compton Diffusion — Polarization
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Figure: Left: Energy spectrum of a monoenergetic photon beam on a monoenergetic
electron cloud, comparison with Jones predictions. Right: Diffusion of a monoenergetic
photon beam on a powerlaw electron cloud, comparison with Thomson’s kernel. Dotted

ines show the analytical solution.

l11. Photon-electron thermal gas equilibrium

Figure: Left: Polarization degree of a monoenergetic photon beam on a monoenergetic

electron cloud. Right: Polarization degree of a monoenergetic photon beam on a

powerlaw electron cloud. Both spectrums are computed from the observer point of view
at the spherical coordinate (6 = 85, ¢ = 0)
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Figure: Energy spectrum of the photon population
after scattering on a thermal electron gas of
normalized temperature 6, = 0.01. The spectrum is
shown at multiple time steps expressed in units of

tc = 1/corn.0,.. In the case of saturated
Comptonization (r > 1), the spectrum tends over time
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Conclusion and perspectives

» We provide a parallel CPU/GPU Comptonization module in the Kerr

metric.

® C++, SYCL framework for best compatibility between CPU and GPU
(250000 photons interaction per sCPU)

® GR pusher with Kerr metric

® Compton scattering with Thomson and Klein Nishina regimes

® Polarization is also handled

» Work done during a 6 month internship, to be continued during a
thesis this Fall.

» Next step:

® Test finite optical depth.
® Test GR + polarization.
® Load electron distributions from PIC simulation to get non thermal and non

isotrope distribution functions.
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