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The toroidal magnetic field is a key ingredient of relativistic jets launched by certain accreting astrophysical black holes, and of plasmoids emerging from the tearing instability during
magnetic reconnection, which is a candidate dissipation mechanism in jets. Tension of the toroidal field is an anisotropic force that can compress local energy and momentum densities.
We investigate this effect in plasmoids produced during relativistic reconnection initiated from a Harris layer by means of kinetic particle-in-cell numerical simulations, varying the system
size (including 3D cases), magnetisation, or guide field. We find that: (1) plasmoid cores are dominated by plasma energy density for guide fields up to Bz ∼ B0; (2) relaxed ‘monster’
plasmoids compress plasma energy density only modestly (by a factor of ∼ 3 above the initial level for the drifting particle population); (3) energy density compressions by factors ≳ 10
are achieved during plasmoid mergers, especially with the emergence of secondary plasmoids. This kinetic-scale effect can be combined with a global focusing of the jet Poynting flux along
the quasi-cylindrical bunched spine (a proposed jet layer adjacent to the cylindrical core) due to poloidal line bunching (a prolonged effect of tension in the jet toroidal field) to enhance the
luminosity of rapid radiation flares from blazars. (Nalewajko 2025, A&A, 696, A25; arXiv:2502.14954)

Reconnection plasmoids: PIC simulations

We used a modified version of the public PIC code Zeltron (Cerutti et al. 2013, ApJ,
770, 147) to perform 2D and 3D simulations of relativistic magnetic reconnection in e−e+

pair plasma without radiation reaction in Cartesian coordinates with periodic boundaries.
The resolution was dx = ρ0/2.56 with nominal gyroradius ρ0 = Θemec

2/eB0, relativis-
tic temperature Θe = kBTe/mec

2 = 1, nominal magnetic field strength B0 = 1 G. We
set two Harris layers (without perturbations) of thickness δ = 2ρ0/udr determined by the
drift velocity βdr = 0.3; supported by the pressure of a drifting particle population of peak
density ndr,0 = γdrB

2
0/(8πΘemec

2); with background particle population of density nbg to
achieve magnetisation of σ0 = B2

0/(4πnbgΘemec
2). In some cases, we added guide field of

strength Bg or third dimension with Lz ≫ ρ0. Simulations were performed for durations of
at least 3Lx/c. For example, simulation labeled L1800 σ10 was initiated with domain size
Lx = 1800ρ0 (Nx = 4608 cells) and σ0 = 10.

Similar results were reported by Schoeffler et al. (2023, MNRAS, 523, 3812).
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Figure 1: Maps of log10(u/uB,0)(x, y) for magnetic energy density, uB = B2/8π (upper panels), and plasma

energy density, upl = ⟨γ⟩nmc2 (middle panels), for relaxed monster plasmoids at the end of each simulation.
In the lower panels, we compare 1D energy density profiles of (u/uB,0)(x, y0) measured along the strip indicated
in the above maps by the dashed grey lines. A common colour scale for all maps is referenced along the left
axes in the lower panels. Here, we present the effect of a guide field for σ0 = 10 and L/ρ0 = 1800. From the
left, the columns show simulations: (1) L1800 σ10, (2) L1800 σ10 Bg05, and (3) L1800 σ10 Bg1.
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Figure 2: Same as Figure 1, but for plasmoid mergers that maximise the plasma energy density, upl, for the
same set of simulations: (1) L1800 σ10, (2) L1800 σ10 Bg05, and (3) L1800 σ10 Bg1.
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Figure 3: Profiles of magnetic (green lines) and plasma (red lines) energy densities across relaxed monster
plasmoids. Panels from the left compare: (1) different sizes, L/ρ0, of simulation domain (2D with σ0 = 10,
Bz = 0); (2) different magnetisations, σ0 (2D with L/ρ0 = 1800, Bz = 0); (3) 3D and 2D domains (with
L/ρ0 = 900, σ0 = 10, Bz = 0); (4) different guide field strengths, Bg/B0 (2D with σ0 = 10, L/ρ0 = 1800).
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Figure 4: Logarithms, f = log10(F ), of volume distributions, F (µ) = dF/dµ, over the argument
µ = log10(u/uB,0), with u the energy density: of magnetic fields, uB = B2/8π (left panel), and of the

plasma, upl = ⟨γ⟩nmc2 (right panel). Functions f (µ) were averaged over the duration of each simulation.
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Figure 5: Same as Figure 4, but for the open-boundary simulations with synchrotron cooling presented in
Ortuño-Maćıas & Nalewajko (2020, MNRAS, 497, 1365). Black dashed lines indicate power-law of index −5/3.

Relativistic jets: bunched spine

Consider the effect of toroidal field tension on the lateral structure of relativistic jet spine
differentiated due to poloidal field bunching (Tchekhovskoy et al. 2009, ApJ, 699, 1789).
Across the spine one can distinguish three zones: the innermost cylindrical jet core, the
intermediate quasi-cylindrical bunched spine, and the outermost paraboloidal main spine.
The main spine zone is the most extended and carries the bulk of the energy flux; it can
be loaded by protons from the jet sheath via boundary instabilities (Chatterjee et al. 2019,
MNRAS, 490, 2200), but this reduces the bulk Lorentz factor Γ. The bunched spine is the
location of peak Γ, and peak toroidal magnetic field, Bϕ, i.e., peak energy (Poynting) flux
density. The jet core is prone to the current-driven instability (CDI), which can accelerate
particles via high-σ reconnection (e.g., Ortuño-Maćıas et al. 2022, ApJ, 931, 137). CDI
perturbations tend to spread from the most unstable toroidal field core to the outside. We
propose that plasmoids from reconnection layers in the jet core spread to the bunched spine
zone, where their enhanced energy density multiplies with the enhanced jet momentum flux
density.
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Figure 6: Proposed lateral structure (not to scale) of a relativistic jet differentiated due to poloidal field
bunching. The bunched spine zone is introduced as the region maximizing the jet energy flux density. The
introduction of plasmoids from reconnection layers created due to CDI in the jet core allow the energy density
enhancement factors of the plasmoids and of the bunched jet spine to multiply.
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