1

Twisted magnetar magnetospheres: a class of semi-analytical force-free non-rotating solutions

Guillaume Voisin, LUX, Observatoire de Paris, CNRS

April 9, 2025

arXiv2504.00680 or hal-05014723 :

arxiv.org/abs/2504.00680 or hal.science/hal-05014723

Introduction

-Introduction

- Motivations

Motivations

- Modelling of internal magnetar magnetospheres, observables, opacity;
- Twist (toroidal component) : effect of starquakes, relaxation and powering of radiation;
- Coupled evolution between stellar interior and magnetosphere:
 - Requires freedom in setting boundary conditions
- Production of Fast Radio Bursts by magnetar magnetospheres.

The problem

 In absence of rotation, the force-free hypothesis and axial symmetry leads to

$$\vec{\nabla} \times \vec{B} = \alpha(\mathcal{P})\vec{B},\tag{1}$$

where α is a function such that $\vec{j} = \alpha \vec{B}$ is the current density, and $\mathcal{P} = \text{constant}$ along field lines.

Magnetic field:

$$ec{B}=ec{B}_{
m p}+B_arphiec{e}_arphi$$
 with $ec{B}_{
m p}=rac{ec{
abla}\mathcal{P} imesec{e}_arphi}{r\sin heta},$ (2)

Introduction

Position of the problem

Unknowns are lpha (or \emph{A}) and $\mathcal P$

From $\vec{\nabla} \times \vec{B} = \alpha \vec{B}$:

$$A = \int \alpha \mathrm{d}\mathcal{P} = r \sin \theta B_{\varphi}.$$
 (3)

The Grad-Shafranov equation

$$-\partial_r^2 \mathcal{P} - \frac{1-\mu^2}{r^2} \partial_\mu^2 \mathcal{P} = \alpha(\mathcal{P}) \mathcal{A}(\mathcal{P}), \tag{4}$$

where $\mu \equiv \cos \theta$.

Boundary conditions :

$$\mathcal{P}(\mu = \pm 1) = 0 \tag{5}$$

5

```
Force-free twisted magnetosphere, Les Houches 2025
└─ Introduction
└─ Examples
```

Example: self-similar solutions (Low& Lou 90, Wolfson 95, Thompson+ 02)

Find an ansatz:

$$\mathcal{P} = F(\mu)/r^{p}$$
; $\alpha(\mathcal{P}) = c\mathcal{P}^{1/p}$, (6)

with F a function to determine, c and p are constants.

$$-p(p+1)F - (1-\mu^2)\partial_{\mu}^2 F = cF^{1+2/p},$$
 (7)

イロト イヨト イヨト イヨト ヨー わへの

• Properties: $\vec{B} \propto r^{-(p+2)}$, non-linear.

Fixing F(µ = ±1) = 0, ∂µF(1), c, p the equation is overdetermined...

Examples

Example: numerical solutions

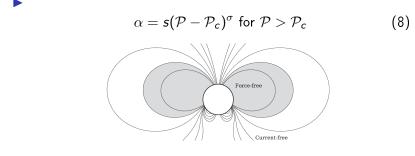


Figure: From Akgün+ 2016

▶ Time dependent force-free (e.g. Parfrey+13)

L The solution

The solution

Force-free twisted	magnet osphere,	Les	Hou ch es	2025	
└─ The solution					

└─ An sat z

Ansatz

$$\mathcal{P} = \sum_{i=1}^{i} \frac{F_i(\mu)}{r^i}, \qquad (9)$$

$$\alpha(\mathcal{P}) = \sum_{i=1}^{i} (i+1)c_i \mathcal{P}^i, \qquad (10)$$

$$A(\mathcal{P}) = \sum_{i=1}^{i} c_i \mathcal{P}^{i+1}, \qquad (11)$$

where $F_i(\mu)$ are functions to be determined, and c_i are a priori arbitrary constants.

```
Force-free twisted magnetosphere, Les Houches 2025
└─ The solution
└─ Hierarchy
```

Hierarchy

For each order $1/r^i$,

$$\forall i \ge 1, -i(i+1)F_i - (1-\mu^2)F_i'' = [\alpha A]_{I=i+2}.$$
 (12)

Complex source terms :

$$[\alpha A]_3 = 2c_1^2 G_3^{(3)}, \tag{13}$$

$$[\alpha A]_4 = 2c_1^2 G_4^{(3)} + 5c_1 c_2 G_4^{(4)}, \qquad (14)$$

$$[\alpha A]_5 = 2c_1^2 G_5^{(3)} + 5c_1 c_2 G_5^{(4)} + (6c_1 c_3 + 3c_2^2) G_5^{(5)}, \quad (15)$$
...
(16)

with

$$G_{l}^{(k)} = \sum_{i_{1}+...+i_{k}=l; i_{j}\geq 1} F_{i_{1}}...F_{i_{k}}.$$
(17)

-Properties

Properties

- ▶ If $c_i = 0$, each equation generates the corresponding vacuum multipole at order $1/r^i$ e.g. $F_1 \rightarrow$ dipole.
- If $|c_1| > 0$, then highly non-linear. For example at order 1/r :

$$-2F_1 - (1 - \mu^2)F_1'' = 2c_1^2F_1^3.$$
(18)

 If c₁ = 0 then F₁ is a vacuum dipole and all equations are linear, but higher orders are sourced by it e.g. for c₂ ≠ 0 at order 1/r³,

$$-6F_3 - (1 - \mu^2)F_3'' = 3c_2^2F_1^5.$$
⁽¹⁹⁾

• Generally, the equation for F_i is hierarchically sourced by $F_{j \le i}$.

```
Force-free twisted magnetosphere, Les Houches 2025
└─ The solution
```

-Prop erties

Properties

Symmetries: ▶ Parity: $\{F_i(\mu)\} \rightarrow \{F_i(-\mu)\}$ • Twist orientation: $\{c_i\} \rightarrow \{-c_i\} \Rightarrow B_{in} \rightarrow -B_{in}$ Convergence: Series converges for |c_i| and |F'_i| not too large. ln the case $c_{i\neq2} = 0, F_{i>1} = 0$, we find convergence for $|c_2| \leq 6F_1^{\prime 2}$. $\mathcal{P} = \sum_{i=1}^{i} \frac{F_i}{r^i}, \ A = \sum_{i=1}^{i} c_i \mathcal{P}^{i+1}, \ B_{\varphi} = \frac{A}{r \sin \theta}$ $\forall i > 1, -i(i+1)F_i - (1-\mu^2)F_i'' = [\alpha A]_{i-i+2},$

```
Force-free twisted magnetosphere, Les Houches 2025
└─ The solution
└─ Properties
```

Equatorial current sheet

In order to satisfy boundary conditions F_i(µ = ±1) = 0 one can solve one hemisphere and symmetrise using even parity {F_i(µ)} → {F_i(−µ)}. This generates a toroidal equatorial current sheet with density,

$$\sigma_{\varphi} = -2B_r(\mu = 0). \tag{20}$$

• Twist orientation can be reversed across equator $\{c_i\} \rightarrow \{-c_i\} \Rightarrow B_{\varphi} \rightarrow -B_{\varphi}$, yielding a radial current sheet,

$$\sigma_r = -2B_{\varphi}(\mu = 0). \tag{21}$$

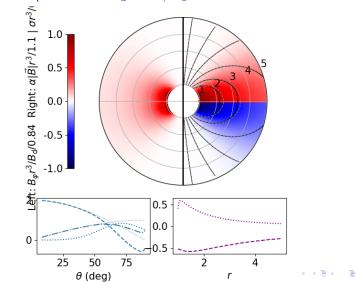
イロト イヨト イヨト イヨト ヨー わへの

 Supported by quadrupole and higher-multipole orders i.e. 1/r^{i≥4}. Force-free twisted magnetosphere, Les Houches 2025 Examples: Picture time !

Examples: Picture time !

Force-free twisted magnetosphere, Les Houches 2025 \Box Examples: Picture time ! \Box Dipole with $c_2 = 6$, $F_1 = 1$

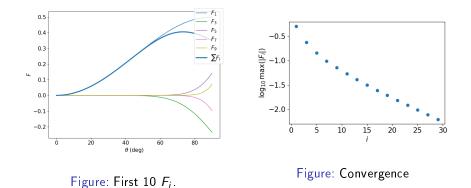
Example 1: Dipole with $c_2 = 6, F_1 = 1$



15

Examples: Picture time !

Dipole with $c_2 = 6$, $F_1 = 1$



• Leading r^{-4} correction: dipole F_1 and sourced twist,

$$\vec{B} = \vec{B}_1^{\rm v} \pm c_2 \frac{B_1^3}{6} \frac{(1-\mu^2)^{5/2}}{r^4} \vec{e}_{\varphi} + \bigcirc \left(\frac{1}{r^5}\right).$$
(22)

 Matches radial dependence fitted to FRB data using a geometrical model (Voisin 2023; Voisin & Francez, Submitted, hal-05022825)

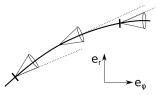
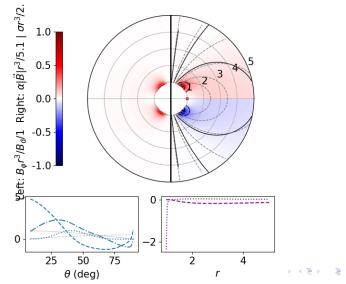


Figure: Emission cone along twisted field line (Voisin 2023)

Analytical solution worked out up to octupolar order.

Examples: Picture time !

Example 2: Dipole+Octupole, $c_2 = 3.2, \dot{F}_1 = 1, \dot{F}_3 = 4$



18

Examples: Picture time !

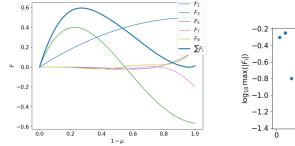


Figure: $\dot{F}_1 = 1$, $\dot{F}_3 = 4$, $c_2 = 3.2$. The thick line shows the sum of the first 50 orders.

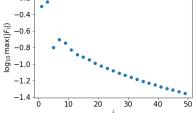
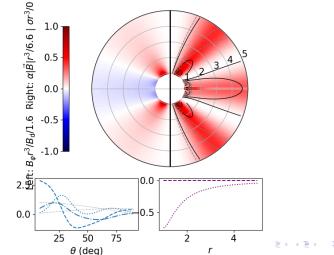


Figure: Convergence

・ロト ・回ト ・ヨト ・ヨト … ヨ

Examples: Picture time !

Example 3: Non-Vacuum dipole+Octupole, $c_1 = 15.981364889, \dot{F}_1 = 1, \dot{F}_3 = 2$



20

Examples: Picture time !

L Dipole+Octupole with $c_{i\neq 3,2} = 0, \dot{F}_1 = 1, \dot{F}_3 = 4$

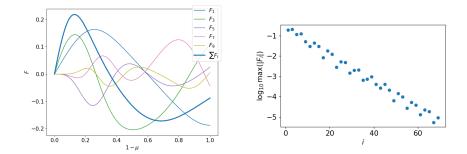


Figure: The thick line shows the sum of the first 70 orders.

Figure: Convergence

イロト イヨト イヨト イヨト

- 3

Conclusions

Conclusions

- Multipolar expansion: great freedom in choosing boundary conditions
- Equatorial current sheet both toroidal, and radial if B_{\varphi} is reversed.
- Solutions asymptotically tending to vacuum.
- Simple analytical solution at quadrupolar order:
 - Matches 1/r⁴ dependence found in fitting geometrical model to FRB data (Voisin & Francez, Submitted, hal-05022825).

$arXiv2504.00680 \ or \ hal-05014723$:

arxiv.org/abs/2504.00680 or hal.science/hal-05014723

Backup slides

Analytical octupolar contribution for $c_{i\neq 2} = 0$

In principle analytical solutions are possible e.g. the equation for F_3 giving the octupole contribution at r^{-5} is sourced by F_1 and has solution

$$F_{3} = K_{3} \left(-\frac{8}{15}\bar{\mu}^{6} + \frac{88}{105}\bar{\mu}^{7} - \frac{24}{49}\bar{\mu}^{8} + \frac{113}{882}\bar{\mu}^{9} - \frac{17}{1323}\bar{\mu}^{10} - \frac{1}{97020}\bar{\mu}^{11} + \sum_{i=12}^{\infty}\alpha_{i}\bar{\mu}^{i} \right),$$

$$(23)$$

with K_3 a constant, and $\bar{\mu}=1-\mu$.

The problem

In absence of rotation, the force-free hypothesis leads to

$$\vec{\nabla} \times \vec{B} = \alpha \vec{B},\tag{24}$$

where α is a function such that $\vec{j} = \alpha \vec{B}$ is the current density. Taking the divergence of Eq. (24) + axial symmetry,

$$\vec{B} \cdot \vec{\nabla} \alpha = \mathbf{0},\tag{25}$$

such that α is constant along a field line.

$$\vec{B} = \vec{B}_{\rm p} + B_{\varphi}\vec{e}_{\varphi} \text{ with } \vec{B}_{\rm p} = \frac{\vec{\nabla}\mathcal{P} \times \vec{e}_{\varphi}}{r\sin\theta}, \qquad (26)$$

with $\mathcal{P} = \text{constant}$ along field lines, and $\alpha = \alpha(\mathcal{P}).$