Pulsar Magnetospheres: An Observational Perspective

Focus on High-Energy (GeV) and Very-High-Energy (TeV) γ rays N.B. only 10³¹ W !

> Arache Djannati-Ataï APC Laboratory, CNRS, Université Paris-Cité

Feeling the Pull and Pulse of Relativistic Magnetospheres Les Houches, April 7, 2025

Outline

Introduction Some History The Fermi-LAT revolution HE and VHE emitting pulsars detected from ground Implications on two main emission paradigmes Perspectives

N.B. Very biased towards γ rays, will not discuss radio, X-rays...
 — only isolated young pulsars

EGRET ERA < 2008 CGRO: April 5th 1991- June 4th 2000

- 7 pulsars detected ightarrow

.

-13

15

-17

12

9

X-Ray

log Observing Frequency (Hz)

Optical

Radio

Gamma Ray

24

27

EGRET ERA < 2008 CGRO: April 5th 1991- June 4th 2000

- 7 pulsars detected
- Polar cap : super-exponential cut-off
- Outer/slot gaps : exponential cut-off
- Data in the [1-10] GeV on brightest pulsars → Not constraining

H.E.S.S. 2004-2007 CT1-4, stereo, >100 GeV

- 11 "young" pulsars selected (except the binary B1259-63)
- Flux
- Edot/ $d^2 > 10^{35} \text{ erg/s/kpc}^2$
- Characteristic ages range: 1.24 to 332 kyrs
- ~350 h of total observing time.
- Searching for possible IC emission > 100 GeV
- No significant excess found
- ULs: constraints for VHE emission models

[H.E.S.S. Collaboration 2007]

Pulsar	Low energy cuts			Standard cuts							
PSR	Non	P_{χ^2}	P_{H}	$P_{Z_{1}^{2}}$	$P_{Z_2^2}$	P_{K}	Non	P_{χ^2}	P_{H}	$P_{Z_{1}^{2}}$	PZ
B0531+21	8095	0.99	0.84	0.81	0.94	0.97	10622	0.51	0.56	0.63	0.2
B0833-45	7480	0.52	0.87	0.85	0.37	0.82	1156	0.79	0.92	0.90	0.9
B1259-63	16176	0.78	0.92	0.90	0.65	0.71	4535	0.29	0.25	0.18	0.4
J1420-6048	2228	0.0093	0.0031	0.072	0.007	0.0049	968	0.67	0.60	0.53	0.5
B1509-58	12481	0.37	0.81	0.77	0.70	0.89	4308	0.048	0.055	0.027	0.1
J1524-5625	2498	0.78	0.43	0.35	0.43	0.39	745	0.87	0.79	0.75	0.9
B1706-44*	_	_	_	_	_	_	391	0.02	0.82	0.78	0.8
J1826-1334	14497	0.71	0.46	0.38	0.57	0.62	4016	0.46	0.42	0.34	0.3
J1747-2958**	23482	0.65	0.98	0.97	0.82	0.95	6340	0.62	0.62	0.92	0.9
J1801-2451**	3230	0.035	0.22	0.15	0.42	0.21	723	0.50	0.15	0.094	0.2

EGRET ERA < 2008 CGRO: April 5th 1991- June 4th 2000

- 7 pulsars detected
- Polar cap : super-exponential cut-off
- Outer/slot gaps : exponential cut-off
- Data in the [1-10] GeV on brightest pulsars \rightarrow Not constraining
- MAGIC detection of Crab pulsar > 25 GeV
- Exp-cutoff E pushed to 17.7 GeV
- Polar Cap model disfavoured but uncertainties on energy scale forbade strong conclusions

Fermi-LAT Era >2008

Launch: June 11th 2008

- As soon as September 2009:
- Super exponential cutoff excluded !
- —> Polar Cap model for HE excluded
- Brightest pulsars (Crab, Vela) :
 —> Sub-exponential cut-off
- Cut-offs in a narrow band E_cut ~1-5 GeV
 —> Curvature Radiation predicts E_cut in this range for easonable values for ρ_C and E_{II}
- As such no hope for VHE emission, except:
 - Tails of exponential cut-off in the <50 GeV range
 - New component e.g. IC à la Hirotani & Shibata OG model, but already severely constrained by IACTs (HESS, VERITAS, MAGIC)

Fermi-LAT 3PC [Smith et al. 2023]

~ 340 Pulsars , 10% of all known radio pulsars

Fermi-LAT 3PC

Fermi-LAT > 1 GeV sky

Radio : ~3500 rotation powered, ~681 MSPs (354 in GCs)

++100s with FAST

- 3PC 384 pulsars listed, 255 with 4FGL-DR3 counterparts
- 136 Young or Middle-aged
- 80 Radio-loud γ-ray (29%)
- 76 Radio-quiet γ-ray (25%)
- 123 γ-ray MSPs : 25 Isolated, 94 Binary (47%)
- 45 Black Widows (32) and Redbacks (13)

340 V-ray pulsars

Pop

- A majority of gamma-ray pulsars have two principal peaks separated by $\Delta \approx$ 0.4 ± 0.15
- RL Pulsars , the first peak generally trails the radio pulse by $\delta \approx 0.2 \pm 0.2$
- No strong evolution with energy $\Delta \leq 0.1$
- Data point to vision of emission zones along caustic viewing lines that change little with electron energy

Vela from radio to y rays

Phase

14

[Kuiper & Hermsen 2015]

- Curvature (dp) depends strongly on Edot
- Variation of ~3 for main population
- Saturate at ~ 4/3, i.e. monoenergetic syn/cr spectrum
- Tight clustering of dp about the Edot scaling relation: accelerators must have broadly similar properties

- Curvature (dp) depends strongly on Edot
- Variation of ~3 for main population
- Saturate at ~ 4/3, i.e. monoenergetic sync/cr spectrum
- Tight clustering of dp about the Edot scaling relation: accelerators must have broadly similar properties

H.E.S.S. Telescopes Key location : Namibia

- Array of 5 Imaging Atmospheric Cherenkov Telescopes (IACTs), CT1-5
 - 4 x 12 m diametre, 960-pixel camera, CT1-4
 - 1 x 28 m-equivalent dish, 2048 pixels, CT5
- Full array energy range ~30 GeV 100 TeV
 - CT1-4 in operation since 2002
 - CT5-only : monoscopic mode, since 2012
 - Threshold energy < 20 GeV for pulsars

The first TeV pulsar : Crab

2011: Breakthrough by VERITAS Detection [120-400] GeV

- Implications:
 - Curvature radiation (CR) excluded > tens of GeV
 - IC emission?

[VERITAS Collaboration et al. 2011]

[Ansoldi et al. 2016]

2016: Breakthrough by MAGIC Extension to ~1.5TeV

The first TeV pulsar : Crab

2011: Breakthrough by VERITAS Detection [120-400] GeV

• Implications:

- Curvature radiation (CR) excluded > tens of GeV
- IC emission?

2024: CTA- LST 1

The first TeV pulsar : Crab

2011: Breakthrough by VERITAS Detection [120-400] GeV

Implications:

- Curvature radiation (CR) excluded > tens of GeV
- IC emission?

Striped wind : e.g. [Petri 2015, Mochol & Petri 2017]

Two IACT pulsars B1706-44 & Geminga

- B1706-44 H.E.S.S., CT5: 10-75 GeV
 - Power-law fits : \bullet

LAT : $\Gamma = 3.9 \pm 0.1$

- H.E.S.S. : Γ=3.8±0.4
- Steep spectrum, ~1000 events > 70 GeV
- Power-law tail à la Crab? not enough stats

- Geminga MAGIC, 15-75 GeV
 - Power-law fits :
 - MAGIC : steep spectral index Γ =5.6±0.54
 - Joint Fermi-LAT+MAGIC fit: Γ =5.2±0.15
- Power-law tail à la Crab : weak indication

H.E.S.S. Vela < 100 GeV CT5, mono, 10-110 GeV

- CT5 spectrum of P2: power-law fit in [10-110] GeV
- Fermi-LAT power-law fit >10 GeV: perfect agreement, including absolute energy scales
- Last significant bin: <E>=80 GeV, 909 events, 3.3 σ
- Power-law tail à la Crab? independent (weak) evidence for curvature of P2 spectrum by:
 - Fermi-LAT: > 3.3 σ
 - H.E.S.S. : > 3.0 σ
- Variation of the power-law index as a function of energy threshold
- CR or Synchrotron (SR)?

Instrument	Threshold	Γ
H.E.S.S. II	~ 10 GeV	4.06 ± 0.16
Fermi-LAT	10 GeV	4.10 ± 0.08
H.E.S.S. II	$\sim 20 \text{ GeV}$	5.05 ± 0.25
Fermi-LAT	20 GeV	4.80 ± 0.30

[H.E.S.S. Collaboration 2017]

1.0

Log-parabola:

$$\phi(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta \cdot \log\left(\frac{E}{E_0}\right)}$$

 $\phi(20 \ GeV) = 1.2 \times 10^{-7} \pm 0.06 \ TeV^{-1}s^{-1}cm^{-2}$ $\alpha = 4.2 \pm 0.08$ $\beta = 1.1 \pm 0.2$

Likelihood ratio: 7.3 σ in favour of the Log-parabola

Maxime Regeard

Vela: Curvature study

16 July 2024

Log-parabola:

$$\phi(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta \cdot \log\left(\frac{E}{E_0}\right)}$$

 $\phi(20 \ GeV) = 5.6 \times 10^{-8} \pm 0.4 \ TeV^{-1}s^{-1}cm^{-2}$ e2dnde [ergs $\alpha = 4.5 \pm 0.2$ $\beta = 1.3 \pm 0.5$

Likelihood ratio: 3.8 σ in favour of the Log-parabola

Maxime Regeard

16 July 2024

The 20 TeV emitter pulsar : Vela

2022: Breakthrough by H.E.S.S. 20 TeV Pulsations, New component (IC)

Phase & width compatible with <100 GeV pulses


```
Very hard spectrum
P2 :
                \Gamma = -1.4 \pm 0.2
New TeV component !
```

[ADA Texas Symposium 2022 H.E.S.S. Collaboration 2023]

Origin of HE/VHE emission?

- Two main paradigms:

 - Acceleration by *E*_{||} in gaps
 Acceleration through magnetic reconnection in the current sheet (CS)
- Two main scenarios:
 - I- Curvature Radiation CR/iC in
 - Outer Gaps
 - Separatrix-CS
 - II- SR/IC in the CS
 - near the LC
 - Boosted emission $\sim >> R_{\rm LC}$
- UV-O-NIR Targets for IC scattering:
 - SR by secondary pairs
 - Along OG or between NS 0.5 $R_{\rm LC}$
 - Around CS (isotropic)

The Original cartoon!

© Marion Spir-Jacob PhD, 2019, APC

Drawn first on the white board (room 596A, APC) by Marion Spir-Jacob during a discussion with ADA (~Nov 2018)

Separatrix/CR Fundamental Plane

[Kalapotharakos et al. 2019, 2022, 2023]

- Assumes CR in separatrix zone model
- 190 pulsars : young (YP) and ms (MS)

 $L_\gamma \propto \epsilon_{
m cut}^{4/3} B_\star^{1/6} \dot{\cal E}^{5/12}$

 $L_{\gamma} = 10^{14.3 \pm 1.3} \epsilon_{\text{cut}}^{1.39 \pm 0.17} B_{\star}^{0.12 \pm 0.03} \dot{\mathcal{E}}^{0.39 \pm 0.05}$

- Light-curve shapes
- Radio-lag vs peak separation

Current Sheet-B Reconnection

[B.Cerutti, A. Philippov, L. Sironi, A. Spitkovsky, D. Uzdensky, G. Werner,...]

- PIC Simulations since >1 decade
- 2D & 3D
 - Striped wind structure
 - Possible formation of caustics
 - Formation of a power-law with hard index
 - Dissipation: 2D slow, large Γw>~10²
 - -> 3D full dissipation few tens/hundreds of R_lc:
 - \rightarrow more modest $\Gamma w < 100$

[A. Philippov & A. Spitkovsky 2018]

- Two main paradigmes:
 - Acceleration by $E_{||}$ in gaps
 - Acceleration through magnetic reconnection in the current sheet (CS)
- TeV phase aligned with GeV pulsations:
 - Same population & similar spatial regions
 - Not necessarily identical: caustics
- Two main scenarios:

I- Curvature Radiation CR/IC in Outer Gaps/Separatrix-CS

 $\begin{array}{l} \gamma_{\rm CR}^{\rm max} \simeq 4 \times 10^7 \, \xi^{1/2} \eta_{-1}^{1/4} \\ E_{\rm CR}^{\rm max} \simeq 5 \, {\rm GeV} \, \xi^{1/2} \eta_{-1}^{3/4} \end{array} \begin{array}{l} \eta_{-1} = \eta/0.1 \\ \rho_{\rm c} = \xi \, R_{\rm LC} \end{array}$

II- SR/IC in the CS

Maximum Lorentz Factor

•	GeV Component	10
•	Interpreted as CR	
•	Same distribution of particles	
	$rac{d^2N}{d\gamma dt} \propto (\gamma/\gamma_0)^{-p} \exp\left[-(\gamma/\gamma^{ m max})^eta ight]$	10
•	The GeV peak energy (or variations of it) is not the best measure of the maximum	10-
•	The IC component (in the KN regime) is unambiguous !	

Maximum Lorentz Factor

- GeV Component \bullet
- Interpreted as CR
- Same distribution of particles

$$rac{d^2 N}{d\gamma dt} \propto (\gamma/\gamma_0)^{-p} \exp\left[-(\gamma/\gamma^{\max})^{\beta}
ight]$$

- The GeV peak energy (or variations of it) is not the \bullet best measure of the maximum
- The IC component (in the KN regime) is unambiguous !
- GeV E_peak should be derived based on a finely \bullet phase-resolved spectrum
- However even for Vela with huge statistics one still ulletgets a sub-exponential cutoff even with very fine binning

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ • Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - $\eta \ll 0.1$ and $\hat{\xi} \gg 1$ $(\eta, \hat{\xi})$ Different combinations of
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion)

- Fit to the TeV data: $\gamma_{\rm IC}^{\rm max} \gtrsim 7 \times 10^7$
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion)

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg 1$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion)

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ • Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg 1$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

 $\gamma_{
m SR}^{
m max} \simeq 1.3 imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2} \, (E_{
m SR}^{
m max}/1.5 \, {
m GeV})^{1/2}$

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion)

electron

O-NIR photon

 $\sim \sim \sim$

GeV gamma ray

TeV gamma ray

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ • Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg 1$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics
- Doppler-boosted (bulk motion)

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg 1$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

 $\gamma_{
m SR}^{
m max} \simeq 1.3 imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2} \, (E_{
m SR}^{
m max}/1.5 \, {
m GeV})^{1/2}$

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics

 $\Gamma_{
m w}\gtrsim 5$

 $\simeq 5 R_{
m LC}$

Doppler-boosted (bulk motion):

- $\gamma_{
 m IC}^{
 m max}\gtrsim 7 imes 10^7$ • Fit to the TeV data:
- CR/IC scenario:
 - Constraint by GeV data:
 - Different combinations of $(\eta, \hat{\xi})$ $\eta \ll 0.1$ and $\hat{\xi} \gg 1$
 - Implies a dissipation region beyond the LC where $\rho_{\rm c} \gg R_{\rm LC}$
 - Can provide much higher energies than in traditional magnetospheric models
- SR/IC scenario:
 - Constraint by GeV data and B:

 $\gamma_{
m SR}^{
m max} \simeq 1.3 imes 10^6 (B_{\perp}/B_{
m LC})^{-1/2} \, (E_{
m SR}^{
m max}/1.5 \, {
m GeV})^{1/2}$

- Insufficient maximum energy
- Particles well beyond SR cut-off
- 2-step acceleration/SR-cooling process
 - Larmor radii > largest plasmoids
 - Re-acceleration after SR-cooling : Caustics

 $\Gamma_{
m w}\gtrsim 5$

 $\simeq 5R_{\rm LC}$

Doppler-boosted (bulk motion):

IC Targets

- IC targets :
 - Radio
 - Non thermal SYN (IR-O-UV, X,..),
 - Thermal X-rays (NS)
 - Other
- VHE index & luminosity is function of target ϵ min:
 - e.g.: NIR-O targets -> UV -X targets
 - Thomson to KN regime
- Degeneracies :
 - Target energy range (min)
 - IC Interaction volume
 - Assuming same population !
 - Underlying particle distribution

Pre-discovery Expectations

- Possibility of a second IC component: Cheng, Ho & Ruderman (1986)
- CR/IC: early Outer-Gap models
 - Romani (1996): primary e- + IR
 - Hirotani & Shibata (2001): primary e⁻ + IR
 - Aharonian & Bogovalov (2003): primary e⁻ + IR->FIR
- Takata et al. (2006): 2D OG model
- Wind:
 - Bogovalov & Aharonian (2000): Pulsed IC from unchecked wind scattering of non-thermal targets (Crab)
- Current sheet, magnetic reconnection:
 - Lyubarskii (1996): SR photons around CS
 - Kirk, Skjærasen & Gallant (2004): SR from striped wind (outside LC)
 - Kirk (2004): acceleration & cooling in the CS: 2 steps -> e⁻ energies beyond SR burn-off
- Synchrotron Self-Compton (SSC):
 - Lyutikov (2012, 2013): Doppler boosted Cylcotron Self-Compton
 - Pétri & Mochol (2015): SR (GeV)
 - Crab: 100-400 GeV 1 TeV ok
 - Vela: no measurable SSC component
 - Hading & Kalapothakaros (2015):
 - Force-free, slot-gap extended > LC, no SSC for Vela
- Osmanov & Rieger (2019): magneto-cetnrifugal acceleration

Post-discovery models

- More complex approaches than the heuristic spectral models
- Provide light curve predictions
- A : OG model [Rudak & Dyks (2017)] Phase-resolved SED
- B : Separatrix/Current sheet [Harding et al. 2018, update of Harding et al. 2015]
 Phase-averaged SED (normalised here)
- Notes:
- Both models predict a larger GeV peak energy
- They are not fitted on data though
- Larger GeV peak energy, provides for larger Lorentz factors for IC emitting particles
- The target SR photon spectrum is extrapolated for both models:
 Emin=0.001 oV (A) and 0.005 oV (B)

E_min=0.001 eV (A) and 0.005 eV (B)

Post-discovery models

Separatrix/CS model [Harding et al. 2021]

- Computation for Vela, Crab, Geminga, PSRB1706-44 & PSR J0218+4332
- Vacuum-retarded dipole < 0.2 R_lc
- Force-free B 0.2-2 R_lc
- Acceleration in gaps extending beyond LC
- Main IC emitting particles accelerated in the CS, though not through magnetic reconnection
- SCR from primaries -> GeV
- IC of pair SR by primaires -> IC
- Pair SSC -> MeV to TeV

A new comer ! **PSR J1509-5850**

- Discovered in the Parkes survey in 2003
- Not to be confused with the close-by PSR B1509-58 in the MSH 15-52 remnant
- Embedded in a compact X-ray PWN with moving NE (similar to Geminga PWN) with a bow-shock
- $E_dot = 5.1x \ 10^{35} \ erg/s : 7\% \ Vela$ \bullet
- P=89 ms (as Vela), age ~153 kyr
- F~1.3 x10¹⁰ erg/cm²/s i.e. 70 times less bright than Vela
- But d~3.4 kpc, ~4 times more luminous
- Light curve: 2 peaks connected with a bridge, but no_{1} significant evolution with energy
- As compared to Vela : $\delta(radio/\gamma) = 0.16 \text{ vs } 0.13 \text{ : similar}$ but: $\Delta(P1, P2) = 0.26 < 0.43$ \rightarrow inclination, viewing angle

PSR J1509-5850 Interpretation

- CR: $\gamma_{CR}^{max} \simeq 3 \times 10^7 \, \xi^{1/2} \eta_{-1}^{1/4}$
- SR: $\gamma_{SR}^{max} \simeq 2.5 \times 10^6 (B_{\perp}/B_{LC})^{-1/2} (E_{SR}^{max}/1.7 \,\text{GeV})^{1/2}$
- $N_0^{\rm CR} / N_0^{\rm SR} \sim 75$.
- $N_0^{CR}(J1509)/N_0^{CR}(Vela) \sim 10$ $N_0^{SR}(J1509)/N_0^{SR}(Vela) \sim 10$
- Not sufficient to explain $L_{\text{TeV}}(J1509)/L_{\text{TeV}}(\text{Vela}) \sim 150$
- Emission zone ~ 1 R_{LC} vs Vela >10 R_LC
- Magnetic conversion efficiency >> Vela

	J1509-5850	Vela	units	ratio
dist	3.4	0.29	kpc	≈ 12
Р	88.93	89.33	S	≈ 1
$R_{\rm LC}$	4224	4262	km	≈ 1
$B_{\rm LC}$	15.2	56.0	10 ³ G	0.27
Ė.	5.2	69.0	10 ³⁵ erg/s	0.074
$L_{\rm GeV}$	40	9.8	10 ³³ erg/s	≈ 4
$L_{\rm TeV}$	300	2	10^{30} erg/s	≈ 150
$\epsilon_{ff { m GeV}}$	7.110 ⁻²	1.410^{-3}		≈ 5 0
$\epsilon_{ff{ m TeV}}$	6.110 ⁻⁴	1.910^{-7}		≈ 3200
$\hat{\mathcal{R}}_{ extsf{FP}}$	≈ 1	10^{-1}		≈ 10

PSR J1509-5850

PSR J1509-5850 IC Targets /Geometry

- TeV: Inverse Compton targets ?
 - Flat O-NIR for young pulsars (<10^4 yrs) transiting towards UV up to non-thermal X-rays
 - Tail of the SR emission of secondary pairs ?
 - NS thermal X-rays ?
 - Non thermal X-rays ?
 - head of X-ray PWN : 10³² erg/s
- Geometry of emission zone :
 - No radio polarisation : no RVM
 - γ-ray only or Radio+ γ-ray LC modelling

	J1509	-5850	Vela		
$\delta_{r/\gamma}$	0.1	.56	0.133		
$\Delta_{P1/P2}$	0.2	258	0.431		
Model	R+γ	γ	R+y	γ	
SG	(46, 66)	(46,43)	(43, 69)	(46,74)	
OG	(85, 76)	(15, 90)	(71,83)	(48,83)	
OPC	(56, 65)	(82, 18)	(56, 77)	(66, 76)	
CS		(40, 24)		(65, 58)	

PSR J1509-5850 IC Targets

- Flat O-NIR for young pulsars (<10^4 yrs) transiting towards UV up to non-thermal X-rays
- Tail of the SR emission of secondary pairs ?
- NS thermal X-rays ?
- Non thermal X-rays ?
 - head of X-ray PWN : 10³² erg/s
 - Extrapolation into O-NIR-UV : 10³¹erg/s 3 orders of magnitude more luminous /Vela
 - Non-thermal X-rays as a proxy for O-NIR-UV as IC targets

Non-thermal X-rays as Proxy for O-NIR

- Flat O-NIR for young pulsars (<10^4 yrs) transiting towards UV up to non-thermal X-rays
- Tail of the SR emission of secondary pairs ?
- NS thermal X-rays ?
- Non thermal X-rays ?
 - head of X-ray PWN : 10³² erg/s
 - Extrapolation into O-NIR-UV : 10³¹erg/s 3 orders of magnitude more luminous /Vela
 - Non-thermal X-rays as a proxy for O-NIR-UV as IC targets
 - Spectral break expected :
 - Young PSRs
 - Old PSRs

PSR J1509-5850 IC Targets

- Flat O-NIR for young pulsars (<10^4 yrs) transiting towards UV up to non-thermal X-rays
- Tail of the SR emission of secondary pairs ?
- NS thermal X-rays ?
- Non thermal X-rays ?
 - head of X-ray PWN : 10³² erg/s
 - Extrapolation into O-NIR-UV : 10³¹erg/s 3 orders of magnitude more luminous /Vela
 - Non-thermal X-rays as a proxy for O-NIR-UV as IC targets

IACT & TeV pulsars Where we stand

- 5 pulsars detected by IACTs from ground
- Only 3 TeV pulsars + two < 100 GeV
- Crab reaches 1 TeV
- Vela and PSR J1509-5850 exhibit a distinct multi-TeV IC component + their spectra is hard
- Their energy Flux ~ 1-2 x 10⁻¹³ erg/cm2/s is among faintest γ-ray sources
- Emission zone @ or beyond LC
- J1509-5850 is similar to Vela but major differences
 - Its TeV Luminosity is 150 times > Vela !
 - Is on the FP, Vela is far away !
 - Magnetic conversion efficiency >> Vela
- No hint of cut-off (stats limited)
- Precise measurement of the spectral index/form is essential

Perspectives Observational...

- Strinking spectral homogeneity : almost all gamma-ray pulsars are "GeV pulsars", with 0.5 < Ep < 2.5 GeV: broadly similar acceleration/ radiation properties
- The paucity of Ep < 500MeV pulsars : Observational limits?
- E_{II} + SCR/Separatrix (FP) vs B-reconnection/CS ?!
- The discovery of 20 TeV pulsations from Vela opened a new observation window! The discovery of the TeV luminous PSR J1509-5850 did even more so
- The TeV pulsar family has only 3 members but already many challenges to emission models Probing
- We still don't know the E_max : both CR/IC and SR/IC can work Fundamental discriminator
- If >100 TeV γ rays: boosted emission in the CS
- Many other questions: LC evolution with E, other peaks with more sensitive surveys? L_{TeV} dependence on inclination?...
- <100 GeV range is also very critical: Crab-like tails or curved Vela-like spectra?
- Multi-wavelength radio and X-rays

TeV rays :

SR/IC: Acceleration & cooling processes deep in the CS **CR/IC:** Magnetic conversion efficiency & acceleration zone

Perspectives Observational

Perspectives Observational

Fermi-LAT > 1 GeV sky

Radio : ~3500 rotation powered, ~681 MSPs (354 in GCs)

++100s with FAST

- 3PC 384 pulsars listed, 255 with 4FGL-DR3 counterparts
- 136 Young or Middle-aged
- 80 Radio-loud γ-ray (29%)
- 76 Radio-quiet γ-ray (25%)
- 123 γ-ray MSPs : 25 Isolated, 94 Binary (47%)
- 45 Black Widows (32) and Redbacks (13)

- 2 HE pulsars (~100 GeV):
 - Geminga
 - B1706-44
- 3 VHE pulsars (>~100 GeV):
 - Crab ~1.5 TeV
 - Vela ~ 20 TeV
 - J1509-5850 ~10 TeV

