GALACTIC PEVATRONS: LINKS WITH COMPACT OBJECTS

Gwenael Giacinti (贾鸿宇)

Tsung-Dao Lee Institute & Shanghai Jiao Tong University

Cosmic-Ray Spectrum

PeV Gamma-Ray Astronomy: LHAASO

Sky at 25 TeV – 1 PeV with LHAASO

LHAASO Collaboration

> Dozen of PeVatrons:

Many PWNe and TeV halos (leptonic); Microquasars (Hadronic?)

Crab Nebula observed by LHAASO

... and dozens of other PWNe

PWNe & Potential TeV Halos in LHAASO Catalogue

Table 4. 1LHAASO sources associated pulsars

Source name	PSR name	Sep.(°)	d (kpc)	τ_c (kyr)	\dot{E} (erg s ⁻¹)	P_c	Identified type in TeVCat
1LHAASO J0007+7303u	PSR J0007+7303	0.05	1.40	14	4.5e + 35	7.3e-05	PWN
1LHAASO J0216+4237u	PSR J0218+4232	0.33	3.15	476000	2.4e + 35	3.6e-03	
1LHAASO J0249+6022	PSR J0248+6021	0.16	2.00	62	2.1e + 35	1.5e-03	
1LHAASO J0359+5406	PSR J0359+5414	0.15	-	75	1.3e + 36	7.2e-04	
1LHAASO J0534+2200u	PSR J0534+2200	0.01	2.00	1	4.5e + 38	3.2e-06	PWN
1LHAASO J0542+2311u	PSR J0543+2329	0.30	1.56	253	4.1e + 34	8.3e-03	
1LHAASO J0622+3754	PSR J0622+3749	0.09	-	208	2.7e + 34	2.5e-04	PWN/TeV Halo
1LHAASO J0631+1040	PSR J0631+1037	0.11	2.10	44	1.7e + 35	3.5e-04	PWN
1LHAASO J0634+1741u	PSR J0633+1746	0.12	0.19	342	3.3e + 34	1.3e-03	PWN/TeV Halo
1LHAASO J0635+0619	PSR J0633 + 0632	0.39	1.35	59	1.2e + 35	9.4e-03	
1LHAASO J1740+0948u	PSR J1740+1000	0.21	1.23	114	2.3e + 35	1.4e-03	
1LHAASO J1809-1918u	PSR J1809-1917	0.05	3.27	51	1.8e + 36	6.2e-04	
1LHAASO J1813-1245	PSR J1813-1245	0.01	2.63	43	6.2e + 36	6.3e-06	
1LHAASO J1825-1256u	PSR J1826-1256	0.09	1.55	14	3.6e + 36	1.6e-03	
1LHAASO J1825-1337u	PSR J1826-1334	0.11	3.61	21	2.8e + 36	2.8e-03	PWN/TeV Halo
1LHAASO J1837-0654u	PSR J1838-0655	0.12	6.60	23	5.6e + 36	2.2e-03	PWN
1LHAASO J1839-0548u	PSR J1838-0537	0.20	-	5	6.0e + 36	6.1e-03	
1LHAASO J1848-0001u	PSR J1849-0001	0.06	-	43	9.8e + 36	1.2e-04	PWN
1LHAASO J1857+0245	PSR J1856+0245	0.16	6.32	21	4.6e + 36	3.1e-03	PWN
1LHAASO J1906+0712	PSR J1906+0722	0.19	-	49	1.0e + 36	5.9e-03	
1LHAASO J1908+0615u	PSR J1907 + 0602	0.23	2.37	20	2.8e + 36	6.8e-03	
1LHAASO J1912+1014u	PSR J1913+1011	0.13	4.61	169	2.9e + 36	1.5e-03	
1LHAASO J1914+1150u	PSR J1915+1150	0.09	14.01	116	5.4e + 35	1.8e-03	
1LHAASO J1928+1746u	PSR J1928+1746	0.04	4.34	83	1.6e + 36	1.6e-04	
1LHAASO J1929+1846u	PSR J1930 + 1852	0.29	7.00	3	1.2e + 37	2.6e-03	PWN
1LHAASO J1954 $+2836u$	PSR J1954 + 2836	0.01	1.96	69	1.1e + 36	1.6e-05	PWN
1LHAASO J1954+3253	PSR J1952 + 3252	0.33	3.00	107	3.7e + 36	6.7e-03	
1LHAASO J1959+2846u	PSR J1958+2845	0.10	1.95	22	3.4e + 35	2.8e-03	PWN
1LHAASO J2005+3415	PSR J2004+3429	0.25	10.78	18	5.8e + 35	9.9e-03	
1LHAASO J2005+3050	PSR J2006 + 3102	0.20	6.04	104	2.2e + 35	9.2e-03	
1LHAASO J2020+3649u	PSR J2021 + 3651	0.05	1.80	17	3.4e + 36	1.5e-04	PWN
1LHAASO J2028+3352	PSR J2028+3332	0.36	-	576	3.5e + 34	8.0e-03	
1LHAASO J2031+4127u	PSR J2032+4127	0.08	1.33	201	1.5e + 35	1.0e-03	PWN
1LHAASO J2228+6100u	PSR J2229+6114	0.27	3.00	10	2.2e + 37	2.2e-03	PWN
1LHAASO J2238+5900	PSR J2238+5903	0.07	2.83	27	8.9e + 35	3.0e-04	

LHAASO Collaboration, ApJS 271, 25 (2024)

LHAASO's PeVatron microquasars

LHAASO Collaboration, arXiv:2410.08988

LHAASO's PeVatron microquasars

LHAASO Collaboration, arXiv:2410.08988

1 – Pulsar Wind Nebulae & TeV halos

Synchrotron from the Crab Nebula

Composite (CXC) X-ray (CXC)

BUT perpendicular shock => 1st order Fermi should NOT work !

Model

Giacinti & Kirk, ApJ 863, 18 (2018), arXiv:1804.05056

→ INJECTION : e.g. Giacchè & Kirk (2017):

 $E_{\rm inj,d} = 1 \,{\rm TeV}$

- \rightarrow Komissarov profile for the B field,
- → Add synthetic turbulence,
- → Integrate the trajectories of individual particules in 3D (test particle limit).

Numerical simulations

POSITRONS:

ELECTRONS:

(roles exchanged with opposite pulsar polarity)

Drift motions on the shock surface eject the positrons...

...and confine the electrons in the equatorial region

PeV γ-rays from the Crab Nebula

Comparison with LHAASO data :

Particle-In-Cell simulations

Cerutti & Giacinti, A&A 642, A123 (2020)

Mean particle Lorentz factor at $\omega_{pe} t = 7840$ for $\sigma_0 = 30$:

u

u

Particle trajectories / acc. mechanisms:

→ Particles on
 Speiser orbits in the equatorial cavity

\rightarrow Shear-flow acceleration

→ Variable, Dopplerboosted synchrotron emission → Crab flares?

Particle trajectories / acc. mechanisms:

→ Particle captured
 by a current layer, =>
 acceleration via
 rela-tivistic
 reconnection.

→ Then (slower) stochastic acceleration.

HAWC observ. of Geminga & Monogem

→ Inverse Compton from
 ~ 100 TeV electrons.
 → γ-ray range: 8 – 40 TeV.

'HALOS': e⁻ E density << E density ISM => <u>Electrons have ESCAPED the PWN</u>.

Giacinti et al., A&A 636, A113 (2020)

PSR B0656+14

(c) 2017 HAWC Collaboration Creative Commons Altribution Share Alike 3.0 Moon Image: (c) Gregory H. Revera

TeV Halos as probes of ISMF properties

2 orders of magnitude smaller than value from B/C ratio

1017 HAWC Collaboration Itribution Share Alike 3.0ge: (c) Gregory H. Revera

Evolutionary stages of a PWN :

Giacinti, Mitchell, Lopez-Coto, Joshi, Parsons & Hinton, A&A 636, A113 (2020), arXiv:1907.12121:

Predicted γ-ray surface brightness

Lopez-Coto & Giacinti, MNRAS 479, 4526 (2018) [arXiv:1712.04373]

Predicted y-ray surface brightness

INCOMPATIBLE WITH HAWC MEASUREMENTS

Large coherence lengths (> 10 pc) ruled out (Too asymmetric)

Best fit to HAWC measurements (χ^2 /ndf<1)

\rightarrow Kolmogorov / Kraichnan, B = 3 μ G, L = 1 pc

Lopez-Coto & Giacinti, MNRAS 479, 4526 (2018) [arXiv:1712.04373]

Asymmetry results ($B_{regular} = 0$):

Li, Giacinti & Lopez-Coto, To be submitted (2025)

Bao, Liu, Giacinti, Zhang & Chen, arXiv:2407.02829

Appearance of "mirage" sources:

Yiwei Bao

The second source is a "**mirage**", where the magnetic field bends inwards /outwards, wrt/ observer.

(*Prediction: X-ray emission at the mirage source fainter than that at the connecting structure.*)

Bao, Giacinti, Liu, Zhang & Chen, arXiv:2407.02478 Bao, Liu, Giacinti, Zhang & Chen, arXiv:2407.02829

Large offsets may exist between real source and detected source

 $B_{turb} \sim 1 \mu G$; $B_{reg} = 0 \mu G$; $L_c = 200 \text{ pc}$; Kolmogorov turbulence ; (8192 particles)

Could explain LHAASO observations

LHAASO Collaboration, ApJS 271, 25 (2024)

Many extended sources w/ irregular shapes:

Large offsets between sources and center

 Table 4. 1LHAASO sources associated pulsars

Source name	PSR name	$\operatorname{Sep.}(^{\circ})$	d (kpc)	τ_c (kyr)	$\dot{E}~({\rm erg~s^{-1}})$	P_c	Identified type in TeVCat
1LHAASO J0007+7303u	PSR J0007+7303	0.05	1.40	14	4.5e + 35	7.3e-05	PWN
1LHAASO J0216+4237u	PSR J0218 + 4232	0.33	3.15	476000	2.4e + 35	3.6e-03	
1LHAASO J0249+6022	PSR J0248 + 6021	0.16	2.00	62	2.1e + 35	1.5e-03	
1LHAASO J0359+5406	PSR J0359+5414	0.15	-	75	1.3e + 36	7.2e-04	
1LHAASO J0534+2200u	PSR J0534+2200	0.01	2.00	1	4.5e + 38	3.2e-06	PWN
1LHAASO J0542+2311u	PSR J0543+2329	0.30	1.56	253	4.1e + 34	8.3e-03	
1LHAASO J0622+3754	PSR J0622+3749	0.09	-	208	2.7e + 34	2.5e-04	PWN/TeV Halo
1LHAASO J0631+1040	PSR J0631+1037	0.11	2.10	44	1.7e + 35	3.5e-04	PWN
1LHAASO J0634+1741u	PSR J0633+1746	0.12	0.19	342	3.3e + 34	1.3e-03	PWN/TeV Halo
1LHAASO J0635+0619	PSR J0633 + 0632	0.39	1.35	59	1.2e + 35	9.4e-03	
1LHAASO 11740±09481	PSR 11740+1000	0.21	1 23	114	230 ± 35	1 40-03	

No counterparts?

2 – Diffuse γ-ray emission: Pulsar wind nebulae & microquasars

The sky at ~ 400 TeV – 1 PeV: Diffuse emission from AS-γ

AS-γ Collaboration, arXiv:2104.05181

The sky at ~ 10 TeV – 1 PeV: Diffuse emission from LHAASO

LHAASO Collaboration, arXiv:2305.05372

Emission in Galactic longitude does not follow target gas...

- → Leptonic origin?
- → Stochasticity of CR injection?

Impact of unresolved sources (PWNe)

Kaci, Giacinti, Semikoz, ApJ Lett. 975, L6 (2024)

- Use ATNF catalog and complete it.
 - Generate a VHE gamma-ray emission similar to that measured by KM2A for each source.
- Constrain the gamma-ray emission to be below KM2A sensitivity.
- Use the same masks as LHAASO.
- Compare the contribution of unresolved sources to the total flux measured by KM2A.

Upper Limits unresolved PWNe/halos

Kaci, Giacinti, Semikoz, ApJ Lett. 975, L6 (2024)

Diffuse VHE $\gamma\text{-}ray$ emission from discrete sources

SIMULATION:

Isotropic and homogeneous diffusion

$$D(E) = 10^{28} D_{28} \left(\frac{R}{3GV}\right)^{\delta} cm^2/s$$
$$D_{28} = 1.33 \times \frac{H}{kpc}$$

2) Time-dependent (mimics self-confinement): 1/100 x D around sources for 10 kyr.

Kaci & Giacinti, JCAP 01, 049 (2025)

Samy Kaci

Cosmic-ray flux at Earth and B/C ratio satisfied

Discrete injection of cosmic rays

Clumps in the gamma-ray flux

Kaci & Giacinti, JCAP 01, 049 (2025)

Diffuse gamma-ray flux clumpy at VHE

Microquasars as Galactic super-PeVatrons

Kaci, Giacinti et al., To be submitted (2025)

Microquasars: inj. -2 spectrum, cutoff at 10 PeV, 100 kyr lifetime, 0.1/kyr rate, power 10³⁹⁻⁴⁰ erg/s.

(Standard/SNR sources: -2.7 Power-law & exponential cutoff at 150TeV.)

-Up: Lower limit by excluding the existence of any active source within 4 kpc in the last 500 kyr.

Down: No source younger than 100 kyr within
 2.2 kpc. Only objects reported by BlackCat at
 r < 2.2 kpc, in the FoV of LHAASO and no
 detection by LHAASO.

 $\rightarrow\,$ Fits the knee and the 10TeV bump.

Microquasars as Galactic super-PeVatrons

Kaci, Giacinti et al., To be submitted (2025)

 \rightarrow POSTER 8

On average 3-4 sources detectable:

molecular clouds similar to that around SS433 (uniform sphere with r = 20pc and $n=30cm^{-3}$)

Contribution to the diffuse emission:

Conclusions & Perspectives

- \rightarrow Particle acceleration possible in equatorial region of pulsar wind termination shocks
- → **TeV halos** constrain CR propagation around middle-aged pulsars
- → Best fit parameters for Geminga
- \rightarrow "Mirage" sources, asymmetric γ -ray sources: Can explain "weird" LHAASO sources
- \rightarrow Clumpy diffuse γ -ray background at VHE
- → Unresolved PWNe/halos: Minor contribution to LHAASO diffuse emission at > a few 10 TeV
- \rightarrow ~ 10 powerful microquasars can fit CR spectrum and LHAASO diffuse γ -ray emission.