Pulsar

Grad-Shafranov formalism (Beskin, Gurevich, Istomin 1983)

Time-dependent force-free (Spitkovsky 2006)

magnetospheres

A computational perspective

Hayk Hakobyan (Columbia)

with

Sasha Philippov (UMD)

Sasha Chernoglazov (IAS) Anatoly Spitkovsky (Princeton) MHD (Tchekhovskoy, Spitkovsky, Li 2013) Kinetic (Philippov, Spitkovsky, Cerutti 2015)

Complex radio-lightcurve of the Crab

← Abdo+ (2010); Kuiper, & Hermsen (2015)

← Abdo+ (2010); Kuiper, & Hermsen (2015)

Pulsar "Tamagotchi"

Pulsar "Tamagotchi": overfeeding the pulsar

Force-free Solution

- $B^2 \gg
 ho_\pm c^2$ (in fact $ho_\pm = 0$)
- assume $\mathbf{E} \cdot \mathbf{B} = 0$ (almost) everywhere
- implicit (numerical) dissipation

Time-dependent force-free formulation:

Maxwell's eqn-s + **j** closure which satisfies $\partial_t (\nabla \cdot \mathbf{E}) + \nabla \cdot \mathbf{j} =$

$$j = \nabla \cdot E \; \frac{E \times B}{B^2} + \frac{(B \cdot (\nabla \times B) - E \cdot \nabla \times E)B}{B^2}$$

Pulsar "Tamagotchi": overfeeding the pulsar

Force-free Solution

- $B^2 \gg
 ho_\pm c^2$ (in fact $ho_\pm = 0$)
- assume $\mathbf{E} \cdot \mathbf{B} = 0$ (almost) everywhere
- implicit (numerical) dissipation

Pulsar "Tamagotchi": overfeeding the pulsar

Kinetic Solution

Kinetic Solution

the cascade is modeled (as long as $n_+ \ge n_{GI}$)

also see Chen & Beloborodov (2014), Cerutti+ (2016), Kalapotharakos+ (2018), Bransgrove+ (2023)

Have we learned anything more than with force-free?

Kinetic Solution

← Plasma density in "regions which are *not* force-free"

HH, Philippov, Spitkovsky (2023)

Kinetic Solution

also see *Cerutti+ (2016, 2017), Cerutti+ (2020), Hu & Beloborodov (2022)*

← Plasma density in "regions which are *not* force-free"

Poynting flux is dissipated via *magnetic reconnection*

Zhang & Sironi (2023)

21

3 L

HH, Philippov, Spitkovsky (2023)

Emission modeling: lightcurves

i=30 - Phase=0.00 - Positrons -

Lightcurves = caustics (assuming emission along **B**)

Emission modeling: lightcurves

i=30 - Phase=0.00 - Positrons -

also see

Lightcurves = caustics (assuming emission along **B**)

Strong synchrotron cooling leads to emission beaming

Chernoglazov, HH, Philippov (2023)

Emission modeling: γ -ray spectra

Sironi & Spitkovsky (2014), Guo+ (2014), Werner+ (2016), Zhang+

magnetization parameter:

$$\sigma = \frac{B_0^2/4\pi}{n_0 m_e c^2} \gg 1$$

for pulsars: $\sigma_{LC} = \frac{1}{2} \frac{V_{pc}/m_e c^2}{n_{LC}/n_{GJ}^{LC}} = \frac{1}{2} \frac{\text{voltage}}{\text{multiplicity}}$

HH+ (2021)

also see

(2021) $dn = C^{-2} \dots E^{-1}$ $dn = C^{-2} \dots E^{-1}$ $E \sim \sigma m_e C^2$ $E - particle kinetic energy (<math>\equiv \gamma - 1$)

Emission modeling: γ -ray spectra

HH+ (2021)

also see

Sironi & Spitkovsky (2014), Guo+ (2014), Werner+ (2016), Zhang+ (2021)

magnetization parameter:

$$\sigma = \frac{B_0^2/4\pi}{n_0 m_e c^2} \gg 1$$

for pulsars: $\sigma_{LC} = \frac{1}{2} \frac{V_{pc}/m_e c^2}{n_{LC}/n_{CL}^{LC}} = \frac{1}{2} \frac{\text{voltage}}{\text{multiplicity}}$

 $\beta_{\rm rec}B_0|e| = \frac{\sigma_T}{4\pi}B_0^2\gamma_{\rm syn}^2$ cooling drag $\gamma_{\rm syn}^{LC} \approx 10^5 \left(\frac{B_{LC}}{10^5 \, G}\right)^{-1/2} \qquad E_{\rm syn} \sim \hbar \omega_B \gamma_{\rm syn}^2 = \frac{9}{4} \frac{\beta_{\rm rec}}{\alpha_E} m_e c^2$

magnetization parameter: $\sigma_{LC} = \frac{1}{2} \frac{V_{pc}/m_e c^2}{n_{LC}/n_{CL}^{LC}} = \frac{1}{2} \frac{\text{voltage}}{\text{multiplicity}}$

synchrotron burnoff: $\gamma_{\rm syn}^{LC} \approx 10^5 \left(\frac{B_{LC}}{10^5 \, c}\right)^{-1/2}$

also see HH, Ripperda, Philippov (2023)

Emission modeling: pair-production

 $\gamma \gamma \rightarrow e^{\pm}$ creates a feedback loop, loading the sheet with plasma and self-regulating σ_{LC} : $\gamma_{max} \sim \sigma_{LC} \& \sigma_{LC} = \frac{1}{2} \frac{\text{voltage}}{\text{multiplicity}}$

pair production multiplicity:

$$\mathcal{M}_{LC} \sim 2 \cdot 10^6 \left(\frac{\dot{E}}{10^{38} \text{ erg/s}}\right)^{3/2} \left(\frac{P}{100 \text{ ms}}\right)^{-1} \left(\frac{L_X/\dot{E}}{1\%}\right) \left(\frac{L_{\gamma}/\dot{E}}{0.1\%}\right)$$

Crab: $\mathcal{M}_{LC} \sim 10^7$ Vela: $\mathcal{M}_{LC} \sim 100$

HH, Philippov, Spitkovsky (2019); also see *Philippov & Kramer (2022)* mechanism proposed by *Lyubarskii (1996)*

Emission modeling: pair-production

mechanism proposed by Lyubarskii (1996)

Emission modeling: multiwavelength (Vela)

Chernoglazov, HH, Philippov (in prep.)

Future challenges: high-energy emission

<u>? Multiwavelength</u> <u>emission of Crab</u>

<u>? Phase-resolved</u> <u>X-ray polarization</u> <u>in Crab</u>

- no distinct TeV signal
- strong X-ray
- copious $\gamma \gamma \rightarrow e^{\pm}$?

Bucciantini+ (Nature, 2023) with IXPE dynamics of lower-energy (weakly cooled) pairs

<u>? Alternative sites for</u> <u>high-energy emission</u>

Future challenges: more broadly

How do pulsars shine beyond radio? (the story so far...)

• In well-fed magnetospheres, dissipation occurs only in the equatorial current layer via **magnetic reconnection**

- Current layers emitting synchrotron γ rays are **strongly cooled** *a-priori*: $\gamma_{syn} \ll \gamma_{max}$
- For the most energetic pulsars (*E* ≥ 10³⁵ erg/s), most of the plasma is produced *in-situ* in the layer via γγ → e[±], potentially producing a lower-energy (opt/UV/keV) counterpart

• Pairs outside the LC are accelerated up to $\gamma_{max} \sim \frac{1}{2} \frac{\text{polar cap voltage}}{\text{multiplicity @ LC}}$

• Emission is beamed along **B** and cuts off at around

 $\sim 16 \text{ MeV} \cdot (\gamma_{\text{max}} / \gamma_{\text{syn}})$

 Inverse-Compton scattering of the lowerenergy counterpart can produce the observed ~ 20 TeV signal in Vela