

Valentina Richard-Romei, Benoît Cerutti, Alessandro Papitto, Riccardo La Placa

IPAG, Université Grenoble Alpes, France valentina.richard-romei@univ-grenoble-alpes.fr

erc

Introduction Theory Setup Results Conclusion Sub-luminous disk state: optical and X-ray pulses from J1023+0038 During the X-ray high intensity mode (~70% of the time): NOT NuSTAF UVOT 1e-11 coherent quasi-simultaneous optical and X-ray pulsations $F_{\rm v}~(erg~cm^{-2}~s^{-1})$

- similar pulse profiles, two broad peaks 180° apart
- modulation by P_{spin}
- same emitting region (~kms apart)
- both compatible with the same power-law spectrum $F_{\nu} \alpha \nu^{-0.7}$
- \rightarrow optical and X-ray pulses should originate from the same phenomenon

Physical origin of theses pulses?

X accretion? pulsed optical luminosity is too high

X activity of a rotation-powered pulsar? pulsed optical and X-ray emission is too high

Valentina RICHARD-ROMEI

Valentina RICHARD-ROMEI

- aspect ratio H/R=0.3
- $\cdot\,$ torus inner boundary at 2.5 $r_{\text{\tiny LC}}$

2 different runs for 2 pulsar magnetic obliquities: χ =15° and χ =75°

- · rearrangement of the magnetosphere around the disk
- plasma from the current sheet is channeled along the disk inner boundary
- isotropization of the plasma

- · forced reconnection: the plasma that hits the disk lights up
- · significant increase of the synchrotron emission
- concentration of the emission along 2 preferential lines of sight

IntroductionTheorySetupResultsConclusionLightcurves - χ=15°

- · significant enhancement of the continuum + of the pulsed fraction
- \cdot 1 broad pulse per $\mathsf{P}_{\mathsf{spin}}$

- · rearrangement of the magnetosphere around the disk
- · deposition of plasma from the current sheet at all latitudes
- isotropization of the plasma

- · significant enhancement of the continuum + of the pulsed fraction
- \cdot 2 broad pulses per P_{spin}, for any viewing angle
- relative amplitude of the pulses depends on the observers' inclination angle
- observation of J1023: viewing angle ~ 45° (Archibald et al., 2010) \rightarrow maximum emission

Main results:

- disk \rightarrow forced reconnection
 - \rightarrow increase of <y> and of **B**_{\perp}
 - \rightarrow significant enhancement of the synchrotron emission (continuum and pulsed fraction)
- lightcurves depend on the pulsar's magnetic obliquity: $\chi < tan(H/R) \rightarrow 1$ pic per Pspin $\chi > tan(H/R) \rightarrow 2$ pics per Pspin

Perspectives:

- probe intermediate magnetic obliquities
- · distinguish among energy bands \rightarrow shift between pulses? different pulsed fractions?
- polarization
- flares for highest magnetic obliquities?
- assess the SSC contribution \rightarrow Tev emission?

