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Jet composition and particle acceleration might be linked

Disk radiation intercepted, o ,
, , Reprocessed background radiation bathes jet;
e.g., by broad-line region 9
~ photon energy ep, ~10 eV
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Magnetized relativistic jet

observed energies

Sikora, Begelman, Rees 1994

Observed photon energies hint at pair-production:
* Observed gamma-rays: €, < 10 GeV

* Observed broad emission lines: €,, ~ 10 eV

* €, near threshold €, = (m,c*)*/€p, ~ 30 GeV
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, , Reprocessed background radiation bathes jet;
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— Propagation —* High-energy particles
inverse Compton (IC) scatter
Turbulence triggered;
bg photons to > 10 GeV

accelerates particles

Magnetized relativistic jet observed energies

Sikora, Begelman, Rees 1994

Observed photon energies hint at pair-production: Need a process to accelerate gamma-ray emitting particles:
* Observed gamma-rays: €, < 10 GeV * Magnetized turbulence could dissipate magnetic free energy
e (Observed broad emission lines: €pg ~ 10 eV * (Alternatively, magnetic reconnection: Mehlhaff et al. 2024)

* €, near threshold €, = (m,c*)*/€p, ~ 30 GeV

Turbulence could couple to radiation and pair production




Jet composition and particle acceleration might be linked

Want to model this — 28

Observed photon energies hint at pair-production: Need a process to accelerate gamma-ray emitting particles:
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* €, near threshold €, = (m,c*)*/€p, ~ 30 GeV

Turbulence could couple to radiation and pair production




A minimum local model

Standard turbulence setup

Initially uniform e* plasma
Total num. density n

Large-scale
driving
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A minimum local model

\ubg(e) = Ung(e -~ Ebg)
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Standard turbulence setup
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Interaction with radiation bath
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Inverse Compton (IC) scattering
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Photon-photon pair production*
f) e \ v
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*Requires particles to reach a critical Lorentz factor yxy = mec2/4eph
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Warm-up: Case when all particles have y < ygy

\ubg(e) = Upy6(€ — €ny)
,\\\
Standard turbulence setup Large-scale
driving
+ Y
S ;’f
3 LL
Interaction with radiation bath 3,./ S
4 A \ H
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. . B§ v,
f—»gﬁg ANNN ‘L\’\_k i& . ) €inj ~ %T
BO — B()Z
_photon pair producti Initially uniform e* plasma
\ Total num. density n,

*Requires particles to reach a critical Lorentz factor yxy = mec2/4eph



Warm-up: y < Yy vields a thermal equilibrium

Standard turbulence setup
[ : Bf v, ]
E. A ———
Y 8mng L

Interaction with radiation bath
AL

'4

Inverse Compton (IC) scattering

R

f—.%f ANNND

€rad = 3 O-TCO/Z)Ubg

\

HK)

Condition €44 = € gives stable thermal equilibrium
temperature kT /mc? = 0g5(0, Upy)
where ¢ = B¢ /16m0,,nym,c?

Zhdankin et al. 2020
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Warm-up: y < Yy vields a thermal equilibrium

Standard turbulence setup
[ : Bf v, ]
E. A ———
Y 8mng L

Interaction with radiation bath

A
'4 N\

Inverse Compton (IC) scattering

f —_— g'v';{ X/\/\/\/»

€rad = 3 UTC<V2>Ubg

Condition €44 = € gives stable thermal equilibrium
temperature kT /mc? = 0g5(0, Upy)
where ¢ = B¢ /16m0,,nym,c?

Steps:

* Require €jp; = €rqq

e Use(y?)=1262% and UTAz —
« where o = B3/16m0,,nogm,c?

e (Canwrite:

0 1| 0% (3me?\ 1] o3
76 1+0\4orUpgl) 6 1+0 %

w_l

Ycool




Fory > yxn, €xpect pair-mediated thermalization

\ubg(e) = Ubg5(e -~ Ebg)
(4

W\,
Suppose gamma-ray absorption optical depth Large-scale
7,, » 1and initially O5s(0, Upg) > vin Y )f« f driving
W I
Particles with y > ygy are effectively non- o/ S LL
radiative: their radiated energy remains ’ H
trapped in the system
PP y ! 4 4.4 3 \
Unless something changes, can no longer %L'g R Bg "
match €,44 and €;,,; if particles havey > ygy ‘L\ﬂ‘k HJ’ - €inj ~ Fnof
By = Byz
EXCEPT €;5, is no longer constant. It Initially uniform e* plasma
decreases with increasing particle count Total num. density n

System may regulate €;,,; through pair
production to push particles backto y < yxn,
restoring thermal equilibrium from before!




Numerical experiments to test thermalization hypothesis

\ubg(e) = Ubg5(e - Ebg)
(RN
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Initially uniform e* plasma

Total num. density n

Large-scale
driving

5123 box size

Initial temperature 8, = kTy/m,c? = 100
Magnetization oy = B /16mny0ymec? = 2.5
Fluctuations driven to B2 ~ B2

€pg Set sothat ygy = myc?/4€,, = 500

Upg set so that HSS(Ubg,GO) =6, = 100

PIC Simulations

Use ZELTRON code
(Cerutti+ 2013, Mehlhaff+ 2024)




ctlL —0 —11 =0 150 PIC simulations demonstrate

1017 - . . pair-regulated thermalization
t . YKN VYmax
100 4 . . I
__./_\ Stages:
-1 B I M |
=~ 107" 4 ™\ 1. Nonthermal particle acceleration
= , | (ct/L =11)toy > Ykn
~ 107~ 4 510 2. Newborn pairs accumulate, impeding
= 2% further energy injection
103 - 3 A r ~ 8 3. Particle energy distribution cools
) é down; low-energy “thermal hump”
10-4 Hb—LU e ‘*'I A develops aty < ygy (ct/L = 50)
101 102 103 104 105 4. Eventually (ct/L = 150), high-energy
p nonthermal tail dies away, leaving

low-energy thermal distribution
Ymax = €BoL/m.c? = 2 x 10*

0,, = temperature of low-energy hump
t = total (original+produced) particles
* 0 = original particles only
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PIC simulations demonstrate
pair-regulated thermalization

Convergence of macroscopic quantities

v

Stages:

1. Nonthermal particle acceleration
(ct/L=11)toy > yxn

2. Newborn pairs accumulate, impeding
further energy injection

3. Particle energy distribution cools
down; low-energy “thermal hump”
develops aty < ygy (ct/L = 50)

4. Eventually (ct/L = 150), high-energy
nonthermal tail dies away, leaving
low-energy thermal distribution

0..(c ) = expected equilibrium temp. based on current ¢
0 = 3(B2)/16m(y)(nym,c?

(N)o = (B?)/16m0,,0m,c?

0,, = temperature of low-energy hump



Outlook so far

thy Fokker-Planck? \

Validated in the non-radiative case by recent PIC

PIC validates pair-thermalization hypothesis.
P yp simulations (Wong et al. 2020, 2025).

But a quantitative understanding is still lacking. Works for IC cooling when y < ¥y (Zhdankin et al.

2020). Why not the more general case?
Want to predict final state: oy, 6¢, and nf/no
Can simulate in just 1D energy space! CHEAPER

Need thorough exploration of parameter space.
Approach: simulate the time evolution of

PICist ive.
is too expensive 0.f = 8,[D()o, f]—a,[(2DW) /vy + AW))f]

Idea: use a Fokker-Planck approach? > + IC radiation + pair production

where D(y) = y?/t .. and A(y) = 0. Model feedback
of pair production by making t,..({y), (n)/ng) /




Conclusions from PIC and Fokker-Planck models

if:

1
g 1 + o, Ycool < VKN

then:
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Conclusions from PIC and Fokker-Planck models

if:

1
g 1 + o, Ycool < VKN

then:

1. Hf ~ yKN/ZO

2. JGB/(1+G )~1 «— | because )/K_N,Vg O-f O-f KN UbgO-TL,V
f f YY ss,f — 6 1+o ycool 1+ or Vcool €hg Lyy




Conclusions from PIC and Fokker-Planck models

if:

3
0

_— =
1+ o, Ycool VKN

| =

955,0 =

then:

1. Hf ~ yKN/ZO

2. J03/(1 4+ 0¢) ~T,, «—— | because )/K_N ~ 0 Uf i kv Ungorl
3.

conv 7OAmfp/C




Conclusions from PIC and Fokker-Planck models

if:

1
g 1 + o, Ycool < VKN

then:

1. Hf ~ yKN/ZO

2. \/0'3/(1 + 0 ) ~T — because )/K_N ~ 0 O-f O-f KN UbgGTL ~
f YY ssf e 1T+ o Vcool 1 +-0f Yeoor €ng Tyy
3. conv 7OAmfp/C

Plasma =radiation




Radiative turbulence as an in situ pair source in blazar jets

Hot Dust Region (HDR) Use:
1. 0; ~ yin/20
Broad Line ! ]/KN/
Region (BLR) 2 \/0.;3/(1 + O';) ~ T),/y
i/r 3. thomy ~ 70N s /c
o const. :._. _____ -
—& % Assume:
- . :
S NP Y o G ., * Turbulencetriggered at d, from BH
| ~ Ruin * CouplestoBLR (dy < Rg;g) or HDR
: (Rgir < dy < Rypgr) photons
: = Ruon * Bulk Lorentzfactor T} (e.g., Ykn = Ykn/I})
What is the turbulence-powered pair yield, ng/n,? Helpfulinfo (Mehlhaff+ 2021):
* Parameterize ng via: o, = By* /4nngmec? = o, /T; * Tpr~ 3= 0rpp =2
* Parameterize ny via: o = B}2/16nn]’c9]ﬁmecz * Tupg ~ 20 = 07 ypgr = 20
« Conclude: * yrnpr ~ 1 X10% 5 ygnupr ~ 4 X% 10°

n n' B2 / 1 / 1 5 1 4 For M87*, magnetospheric models
f_ 2 _ ( f )(GC >< ) ~ (UC >< ) ~ ( UC)( ) ~ {UC/lO  BLR (Kimura+ 2022, Chen+ 2023, Hakobyan+ 2023)

ng ng

B(SZ 49} 0']5 49} 0']5 VKN O-]g Uc/106» HDR predict o, € [10% 108] at jet base

~
~ 1



Conclusions

* Studied relativistic turbulence coupled to an external
radiation bath, as in blazar jets

* Predicted and confirmed (via PIC simulations) pair-
thermalization mechanism

* Explored parameter space using Fokker-Planck
modeling, benchmarked by PIC

* Worked out final thermal temperature ¢ ~ ygy /20, final

(hot) magnetization obeying\/a]?/(l + 0r) ~ Ty, and

thermalization time t;ony, ~ 70,5y /cC T 2 o f
Region (BLR) z

* Plasma forgets its initial state; radiation tells it what to do

* Radiative turbulence may be an in situ pair source in o T R
blazar jets (particle acceleration < composition)

Rupr
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Some notes about the simulations

* 5123 cells; initially 2 particles per cell
 Boxlength L = 644, where A, is initial plasma Debye length: Ax = 4,/8
* Haveto “catch”final Debye length A¢: need Ax < A¢

e Initially thermal (Maxwell-Juttner) particle energy distribution f « Y% exp(—y/8,)
* Initial temperature = initial 8, = 100; Y., = 500

1071 10° 101

ct/L =100 ‘ ct/L =145

Want to test if pair-production drives the
system to a final thermal equilibrium




Allowing y > y gy breaks equilibrium, even without pair production

Condition €,,q4 = €;,j now difficult to achieve

Standard turbulence setup

) Bg Vg
E. AN — —

nJ 8mng L
+

Interaction with radiation bath

A
'4 N\

Inverse Compton (IC) scattering

f —_— g’vj{ (/\/\/\/»

€raa € (V%) = €rqa < V2 fun (Y /YkN))

where fin (%) = 1/(1 + x)3/?



Allowing y > y gy breaks equilibrium, even without pair production

Condition €,,4 = €;,; now impossible to achieve

Standard turbulence setup

) Bg Vg
E. AN — —

nJ 8mng L
+

Interaction with radiation bath

A
'4 N\

Inverse Compton (IC) scattering

J
)
§

f _—q;f{/\/\/\/»

€raa € (V%) = €rqa < V2 fun (Y /YkN))

where fin (%) = 1/(1 + x)3/?

/ Fokker-Planck forbids €44 = €

Consider the same Fokker-Planck equation from before:

0.f = 0,[DY, f] = 3, [(2DWN) /v + AW))S]

with D < y?>and A = Ajc < v fun (v /Ykn)-

Ain(LY=4=F .
Solve new steady state, & In <y2> == frn:

= f(y) xy? eXp(const-/\/ L+v/vkn )

\

Not normalizable. €,,4 can no longer keep up with €;;,;!




Allowing y > y gy breaks equilibrium, even without pair production

Condition €,,4 = €;,; now impossible to achieve

Standard turbulence setup

) Bg Vg
E. AN — —

nJ 8mng L
+

Interaction with radiation bath

A
'4 N\

Inverse Compton (IC) scattering

f —»%/\/\/\/»

€raa € (V%) = €rqa < V2 fun (Y /YkN))

where fin (%) = 1/(1 + x)3/?

...but pair production doesn’t help

With pair production:
Particles with y > yy are effectively less
radiative. Their radiated energy remains

trapped in the system (producing pairs)

The collective radiative efficiency is strictly
diminished, even for 7, < 1

The particle number keeps growing

How can equilibrium be reached?



The PIC loop

4 . (X, V) of individual particles
Lo \
Update particle (7, p) from (F, B); I ! | )
; , I Calculate discrete photon emission 1 T /
+ apply continuous cooling: 1 - _ I ) 1
~ P ~ pl + apply discrete cooling; I o o
= e | 1 —
a _ E’ (_E_JF_C_X_B_) _+_f 12’“31.’ I Calculate pair production 1 N @
! Advance photon positions , : : O .//v /.
\ ------------- ) D _ N] ‘/
O J— o=
N\ [ N\ P ==
— — E’ B’ ’ p
Advance (£, B): .
5 = Compute p and J
= —cV X -
_’t L . from (&, ¥) of particles . .
E =cV x B —4nJ Using Zeltron (Cerutti et al. 2013)
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