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Observed photon energies hint at pair-production:
• Observed gamma-rays: 𝜖𝛾 ≳ 10 GeV
• Observed broad emission lines: 𝜖𝑏𝑔 ∼ 10 eV
• 𝜖𝛾 near threshold 𝜖𝑡ℎ = 𝑚𝑒𝑐2 2/𝜖𝑏𝑔 ∼ 30 GeV

Jet composition and particle acceleration might be linked

Sikora, Begelman, Rees 1994

Particle 
acceleration
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Want to model this
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Standard turbulence setup

Interaction with radiation bath

Inverse Compton (IC) scattering

+

Warm-up: 𝜸 ≪ 𝜸𝑲𝑵 yields a thermal equilibrium 
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Condition ሶ𝜖𝑟𝑎𝑑 = ሶ𝜖𝑖𝑛𝑗 gives stable thermal equilibrium 
temperature 𝑘𝑇𝑠𝑠/𝑚𝑐2 = 𝜃𝑠𝑠 𝜎, 𝑈𝑏𝑔

where 𝜎 ≡ 𝐵0
2/16𝜋𝜃𝑠𝑠𝑛0𝑚𝑒𝑐2 

Zhdankin et al. 2020
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Steps:

• Require ሶ𝜖𝑖𝑛𝑗 = ሶ𝜖𝑟𝑎𝑑

• Use 𝛾2 = 12𝜃𝑠𝑠
2      and     𝑣𝐴

𝑐
=

𝜎

1+𝜎

• where 𝜎 ≡ 𝐵0
2/16𝜋𝜃𝑠𝑠𝑛0𝑚𝑒𝑐2
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For 𝜸 > 𝜸𝑲𝑵, expect pair-mediated thermalization

Suppose gamma-ray absorption optical depth 
𝜏𝛾𝛾 ≫ 1 and initially 𝜃𝑠𝑠 𝜎, 𝑈𝑏𝑔 > 𝛾𝐾𝑁

Particles with 𝛾 > 𝛾𝐾𝑁 are effectively non-
radiative: their radiated energy remains 
trapped in the system

Unless something changes, can no longer 
match ሶ𝜖𝑟𝑎𝑑 and ሶ𝜖𝑖𝑛𝑗 if particles have 𝛾 > 𝛾𝐾𝑁

EXCEPT ሶ𝜖𝑖𝑛𝑗 is no longer constant. It 
decreases with increasing particle count

System may regulate ሶ𝜖𝑖𝑛𝑗 through pair 
production to push particles back to 𝛾 < 𝛾𝐾𝑁, 
restoring thermal equilibrium from before!
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Initially uniform 𝑒± plasma
Total num. density 𝑛0 



Numerical experiments to test thermalization hypothesis
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Use ZELTRON code
(Cerutti+ 2013, Mehlhaff+ 2024)

• 5123 box size
• Initial temperature 𝜃0 = 𝑘𝑇0/𝑚𝑒𝑐2 = 100
• Magnetization 𝜎0 = 𝐵0

2/16𝜋𝑛0𝜃0𝑚𝑒𝑐2 = 2.5

• Fluctuations driven to 𝛿B2 ∼ 𝐵0
2

• 𝜖𝑏𝑔 set so that 𝛾𝐾𝑁 = 𝑚𝑒𝑐2/4𝜖𝑏𝑔 = 500

• 𝑈𝑏𝑔 set so that 𝜃𝑠𝑠 𝑈𝑏𝑔, 𝜎0 = 𝜃0 = 100 

PIC Simulations



PIC simulations demonstrate 
pair-regulated thermalization

Stages:

1. Nonthermal particle acceleration 
(𝑐𝑡/𝐿 = 11) to 𝛾 > 𝛾𝐾𝑁

2. Newborn pairs accumulate, impeding 
further energy injection

3. Particle energy distribution cools 
down; low-energy “thermal hump” 
develops at 𝛾 < 𝛾𝐾𝑁 (𝑐𝑡/𝐿 = 50)

4. Eventually (𝑐𝑡/𝐿 = 150), high-energy 
nonthermal tail dies away, leaving 
low-energy thermal distribution

• 𝛾𝑚𝑎𝑥 = 𝑒𝐵0𝐿/𝑚𝑒𝑐2 = 2 × 104

• 𝜃𝑙𝑜 = temperature of low-energy hump
• 𝑡 = total (original+produced) particles
• 𝑜 = original particles only



Convergence of macroscopic quantities

PIC simulations demonstrate 
pair-regulated thermalization

Stages:

1. Nonthermal particle acceleration 
(𝑐𝑡/𝐿 = 11) to 𝛾 > 𝛾𝐾𝑁

2. Newborn pairs accumulate, impeding 
further energy injection

3. Particle energy distribution cools 
down; low-energy “thermal hump” 
develops at 𝛾 < 𝛾𝐾𝑁 (𝑐𝑡/𝐿 = 50)

4. Eventually (𝑐𝑡/𝐿 = 150), high-energy 
nonthermal tail dies away, leaving 
low-energy thermal distribution

• 𝜃𝑠𝑠 𝜎 ≡  expected equilibrium temp. based on current 𝜎
• 𝜎 ≡ 3⟨𝐵2⟩/16𝜋 𝛾 ⟨𝑛⟩𝑚𝑒𝑐2

• 𝑛 ∞ = 𝐵2 /16𝜋𝜃𝑙𝑜𝜎𝑚𝑒𝑐2

• 𝜃𝑙𝑜 ≡ temperature of low-energy hump



Outlook so far

PIC validates pair-thermalization hypothesis.

But a quantitative understanding is still lacking.

Want to predict final state: 𝜎𝑓, 𝜃𝑓, and 𝑛𝑓/𝑛0

Need thorough exploration of parameter space.

PIC is too expensive.

Idea: use a Fokker-Planck approach?

Why Fokker-Planck?

Validated in the non-radiative case by recent PIC 
simulations (Wong et al. 2020, 2025).

Works for IC cooling when 𝛾 < 𝛾𝐾𝑁 (Zhdankin et al. 
2020). Why not the more general case?

Can simulate in just 1D energy space! CHEAPER

Approach: simulate the time evolution of

𝜕𝑡𝑓 = 𝜕𝛾 𝐷 𝛾 𝜕𝛾𝑓 − 𝜕𝛾 2𝐷 𝛾 /𝛾 + 𝐴 𝛾 𝑓

                   + IC radiation + pair production
 
where 𝐷 𝛾 = 𝛾2/𝑡𝑎𝑐𝑐 and 𝐴 𝛾 = 0. Model feedback 
of pair production by making 𝑡𝑎𝑐𝑐 𝛾 , ⟨𝑛⟩/𝑛0
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Radiative turbulence as an in situ pair source in blazar jets

What is the turbulence-powered pair yield, 𝑛𝑓/𝑛0?
• Parameterize 𝑛0 via: 𝜎𝑐

′ = 𝐵0
′2/4𝜋𝑛0

′ 𝑚𝑒𝑐2 = 𝜎𝑐/Γ𝑗

• Parameterize 𝑛𝑓 via: 𝜎𝑓
′ = 𝐵𝑓

′2/16𝜋𝑛𝑓
′ 𝜃𝑓

′ 𝑚𝑒𝑐2

• Conclude:

Use:
1. 𝜃𝑓

′ ∼ 𝛾𝐾𝑁
′ /20

2. 𝜎𝑓
′3/(1 + 𝜎𝑓

′) ∼ 𝜏𝛾𝛾
′

3. 𝑡𝑐𝑜𝑛𝑣
′ ∼ 70𝜆𝑚𝑓𝑝

′ /𝑐

Assume:
• Turbulence triggered at 𝑑0 from BH
• Couples to BLR (𝑑0 < 𝑅𝐵𝐿𝑅) or HDR 

(𝑅𝐵𝐿𝑅 < 𝑑0 < 𝑅𝐻𝐷𝑅) photons
• Bulk Lorentz factor Γ𝑗 (e.g., 𝛾𝐾𝑁

′ = 𝛾𝐾𝑁/Γ𝑗)

𝑛𝑓

𝑛0
=

𝑛𝑓
′

𝑛0
′ =

𝐵𝑓
′2

𝐵0
′2

𝜎𝑐
′

4𝜃𝑓
′

1

𝜎𝑓
′ ≃

𝜎𝑐
′

4𝜃𝑓
′

1

𝜎𝑓
′ ≃

5𝜎𝑐

𝛾𝐾𝑁

1

𝜎𝑓
′ ∼ ൝

𝜎𝑐/104, 𝐵𝐿𝑅

𝜎𝑐/106, 𝐻𝐷𝑅

Helpful info (Mehlhaff+ 2021):
• 𝜏𝐵𝐿𝑅

′ ∼ 3 ⇒ 𝜎𝑓,𝐵𝐿𝑅
′ ≃ 2

• 𝜏𝐻𝐷𝑅
′ ∼ 20 ⇒ 𝜎𝑓,𝐻𝐷𝑅

′ ≃ 20

• 𝛾𝐾𝑁,𝐵𝐿𝑅 ∼ 1 × 104    ;    𝛾𝐾𝑁,𝐻𝐷𝑅 ∼ 4 × 105

For M87*, magnetospheric models
(Kimura+ 2022, Chen+ 2023, Hakobyan+ 2023) 

predict 𝜎𝑐 ∈ 104, 108  at jet base

≃ 1



Conclusions
• Studied relativistic turbulence coupled to an external 

radiation bath, as in blazar jets

• Predicted and confirmed (via PIC simulations) pair-
thermalization mechanism

• Explored parameter space using Fokker-Planck 
modeling, benchmarked by PIC

• Worked out final thermal temperature 𝜃𝑓 ∼ 𝛾𝐾𝑁/20, final 

(hot) magnetization obeying 𝜎𝑓
3/(1 + 𝜎𝑓) ∼ 𝜏𝛾𝛾, and 

thermalization time 𝑡𝑐𝑜𝑛𝑣 ∼ 70𝜆𝑚𝑓𝑝/𝑐

• Plasma forgets its initial state; radiation tells it what to do

• Radiative turbulence may be an in situ pair source in 
blazar jets (particle acceleration  composition)





Backup Slides



Some notes about the simulations
• 5123 cells; initially 2 particles per cell
• Box length 𝐿 = 64𝜆0 where 𝜆0 is initial plasma Debye length: Δ𝑥 = 𝜆0/8

• Have to “catch” final Debye length 𝜆𝑓: need Δ𝑥 ≤ 𝜆𝑓

• Initially thermal (Maxwell-Jüttner) particle energy distribution 𝑓 ∝ 𝛾2 exp(−𝛾/𝜃0)
• Initial temperature = initial 𝜃𝑠𝑠 = 100; 𝛾𝑐𝑟 = 500

100 10110−1

Want to test if pair-production drives the 
system to a final thermal equilibrium



Allowing 𝜸 > 𝜸𝑲𝑵 breaks equilibrium, even without pair production

Standard turbulence setup

Interaction with radiation bath

Inverse Compton (IC) scattering

+

ሶ𝜖𝑟𝑎𝑑 ∝ 𝛾2 → ሶ𝜖𝑟𝑎𝑑 ∝ 𝛾2𝑓𝐾𝑁(𝛾/𝛾𝐾𝑁)

Condition ሶ𝝐𝒓𝒂𝒅 = ሶ𝝐𝒊𝒏𝒋 now difficult to achieve

ሶ𝜖𝑖𝑛𝑗 ∼
𝐵0

2

8𝜋𝑛0

𝑣𝐴

𝐿

where 𝑓𝐾𝑁 𝑥 ≃ 1/ 1 + 𝑥 3/2



Allowing 𝜸 > 𝜸𝑲𝑵 breaks equilibrium, even without pair production

Fokker-Planck forbids ሶ𝜖𝑟𝑎𝑑 = ሶ𝜖𝑖𝑛𝑗

Consider the same Fokker-Planck equation from before:

𝜕𝑡𝑓 = 𝜕𝛾 𝐷 𝛾 𝜕𝛾𝑓 − 𝜕𝛾 2𝐷 𝛾 /𝛾 + 𝐴 𝛾 𝑓

 
with 𝐷 ∝ 𝛾2 and 𝐴 = 𝐴𝐼𝐶 ∝ 𝛾2𝑓𝐾𝑁(𝛾/𝛾𝐾𝑁).

Solve new steady state, 𝑑

𝑑𝛾
ln

𝑓

𝛾2 =
𝐴

𝐷
= 𝑓𝐾𝑁:

⇒ 𝑓 𝛾 ∝ 𝛾2 exp 𝑐𝑜𝑛𝑠𝑡./ 1 + 𝛾/𝛾𝐾𝑁 

Not normalizable. ሶ𝝐𝒓𝒂𝒅 can no longer keep up with ሶ𝝐𝒊𝒏𝒋!

Standard turbulence setup

Interaction with radiation bath

Inverse Compton (IC) scattering

+

ሶ𝜖𝑟𝑎𝑑 ∝ 𝛾2 → ሶ𝜖𝑟𝑎𝑑 ∝ 𝛾2𝑓𝐾𝑁(𝛾/𝛾𝐾𝑁)

Condition ሶ𝝐𝒓𝒂𝒅 = ሶ𝝐𝒊𝒏𝒋 now impossible to achieve

ሶ𝜖𝑖𝑛𝑗 ∼
𝐵0

2

8𝜋𝑛0

𝑣𝐴

𝐿

where 𝑓𝐾𝑁 𝑥 ≃ 1/ 1 + 𝑥 3/2



Allowing 𝜸 > 𝜸𝑲𝑵 breaks equilibrium, even without pair production

Standard turbulence setup

Interaction with radiation bath

Inverse Compton (IC) scattering

+

ሶ𝜖𝑟𝑎𝑑 ∝ 𝛾2 → ሶ𝜖𝑟𝑎𝑑 ∝ 𝛾2𝑓𝐾𝑁(𝛾/𝛾𝐾𝑁)

ሶ𝜖𝑖𝑛𝑗 ∼
𝐵0

2

8𝜋𝑛0

𝑣𝐴

𝐿

where 𝑓𝐾𝑁 𝑥 ≃ 1/ 1 + 𝑥 3/2

With pair production:

Particles with 𝛾 > 𝛾𝐾𝑁 are effectively less 
radiative. Their radiated energy remains 
trapped in the system (producing pairs)

The collective radiative efficiency is strictly 
diminished, even for 𝜏𝛾𝛾 < 1

The particle number keeps growing

How can equilibrium be reached?

…but pair production doesn’t help
Condition ሶ𝝐𝒓𝒂𝒅 = ሶ𝝐𝒊𝒏𝒋 now impossible to achieve



The PIC loop

Using Zeltron (Cerutti et al. 2013)
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