Ab initio simulation of neutron star electrospheres
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Electrospheres: a few commonplace conjectures

Y hligh ‘ ' ‘ @ Pulsar = many e~ + e pair creations
acceleration .
5t power ] Electrosphere = few (or no) pair

creations.

@ Electrospheres have tenuous plasma,
weak electric currents, they do not

radiate strongly
@ Electrospheres are not observed

Electrospheres occur with neutron stars

(NS) with low magnetic field and low spin

acceleration
, _power
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rate (~ weak energy)

. @ The pulsar graveyard contains
Observed pulsars in the period P and period derivative P o

electrospheres, and the huge majority of
diagram. Top : stronger magnetic fields. Left : higher spin

NS environments .
o
rates. )
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Previous simulations of electrospheres

3D structure of the electrosphere

Polar axis

L A Bquatorial plane

Aligned electrospheres
Left: PIC simulation of ultrafast NS with "indeterminate” magnetic field [Spitkowski+ 2014]

Right: force-free semi analytic, more realistic and detailed study [Petri 2002]

3D PIC simulations, of ultrafast NS with "indeterminate” magnetic field, and force-free inner boundary conditions
[McDonald+Shearer 2009] "initial simulations”, with no follow-up. Red: electron density. Yellow: positron density.
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Data for a neutron star magnetosphere simulation
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Neutron star (NS) < a rotating sphere,
with a strong magnetic field, and a

surface with a large electrical conductivity.
The surface magnetic field B-(Rx, 0, ¢) is
dipolar, with an inclination i to the axis
of rotation.

A surface corotation electric field
E=—vy, xBand V-E = pcootation-

The electromagnetic field is non-trivially
expanded into vacuum (analytical
solution) [Deutch, Petri, Bonazzola+]

A central electric charge, and the charges

surrounding the NS are the other causes
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At the initial stage of the simulation, the NS surface magnetic
field is expanded into vacuum. Left: i = 45°, mid distance. o
Right: i = 75° inside and beyond the light cylinder.
o
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The Pulsar ARoMa code

[Mottez, 2023]

Stationary solution through iteration process.

Each iteration include long particle trajectories (~ 10000 time steps).
3D spatial grid in spherical coordinates,

~ 10 interlocking spherical shells of variable sizes.

Inner boundary: Ar ~ 1 cm. Outer boundary: Ar ~ 100 m.

Solve Maxwell's equations with spectral methods (very efficient if soft gradients) [Novak,
Petri].

Particles have a statistical weight depending on their initial energy.
Trajectories: solve diff. eq. of motion with variable At.

Particle finite inertia — parallel motion + guiding center drifts.
Energy loss by curvature radiation [Vigano 2015].

No force-free hypothesis (boundaries, motion, EM field).
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Pulsar Aroma: like a PIC code, stationary

Px

1/20 [1/20,

120 = | =
| ®n20] 3707
28 sno 3\1!20 X
‘\1/20 }320
Se.

| 1/20 |1/20
120 | —

Y

Trajectory starting from a given cell of
the phase space, calculated for 20 time

steps.

Figure 1: Propagation of a pseudo-particle and deposition of charge and current

densities.
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Une electrosphere trop choupi
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Inclination i = 45 deg, R = 12 km, and Qp = Q¢ and B} = 10° G, P = 10 ms.

@ We can produce oblique electrospheres

@ Same structure as in other publications : two electron domes aligned

with the magnetic axis + a proton belt.

@ Our solutions are not force-free.
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We started a parametric study, and cancelled it...

@ Lower values of Q2B; imply larger electron

charge density charge density

domes.
@ Lower value of Q/Qc imply larger electron
domes, or even less confined electrons (as

suggested intuitively).
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From (a) to (b) and (b) to (c), 2By is divided by 10. (a,b,c)

Q/Qc = 0.8, (d) Q/Qc = 0.5. )
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... problem of boundary conditions on the NS surface

o
2]
o
o

B,: given. Arbitrary (here, dipole).
Tangential E: corotation field
E,: separate vacuum field, and charge density field. [Petri, 2002]

Vacuum E, contains information about NS rotation. Explicit

formulas. [Bonazzola 2014, Petri, 2014]
Charge density field computed in volume V®(p), and ¢ =0 at

boundaries.

@ What is the charge density at the NS surface ? We are currently

working on it. Above simulations: p(Rx) = pcorotation 1-€. continuity.
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Emission from primary particles
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Trajectory starting from a given cell of
the phase space, calculated for 20 time

steps.

Figure 2: Propagation of a pseudo-particle.
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Emission from the primary particles

We solve the radiative transfer equation,

ar, .
=i 1
il (1)

which comes to calculate source terms. In fact, we compute the specific
energy E, instead of the emissivity j,.

@ Along a full particle trajectory, curvature radiation is dominant so the

energy spectrum of a source term is,
+t02\3rq*y [ v\ N
Epo= | 2T90p( V) Py, 2
o [ 2R () Py ©)
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Absorption in the magnetosphere

We solve the radiative transfer equation,

d/,

dis = —Oé,/ly . (3)
The energy absorbed in a cell of volume dV and absorption coefficient
into which a photon crosses a length ds is,

d%E,aps = v <'”Csodv) ds . (4)
=dE,so
|+ photon
L
////

Figure 3: Trajectory of a photon and its ‘peeled off’ radiation.
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Origin of «,, and pair creation

Pair creation, photon-magnetic field channel:
y+B—et+e”

To simplify we take «,, as an asymptotic reaction rate
[Daugherty and Harding, 1983]. In the frame (%) where k- Bg = 0,

4
aBj 0.23¢ 3 , yo<«1
Qo = X

(5)

_1
030x,° , xo»1,

with xo = /)By, vy = % and B} = BBTOr' The spectrum of the pairs in

the frame of the observer (%) is,

v E,
an =f 1 da b (6)
d~y o, dy hv
——— ~——

probability density number of photons
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Population of pair created and synchrotron emission

BUT, we treat synchrotron emission right after the creation because the

solver does not account for such short scale motion.
et +e” — et +e + 2Ysyne - (7)

The synchrotron energy spectrum is [Rybicki, 1979],

+oo 2
Eysyne = f mm_p(”) aiNdfy . (8)

0 c ve ) O
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Implementation

repeat at each iteration until convergence

Compute par- Absorption,

ticle trajecto- pair  creation

[Get p,j]——[Get E,B]

ries on back-

and syn-

ground fields chrotron

Y

and emitted radiation and radiation at infinity
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Conclusion: what can do Pulsar Aroma 7

@ Solve the electrosphere electrodynamics problem with particle

distribution functions.

@ Solve the radiative transfer in the magnetosphere with the help of
distribution functions : emission from particles, absorption by pair

creations.

@ We can parametrize the NS with realistic parameters, at moderate

computing costs.

@ Injection of particles from the NS: work in progress.
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Thank you for your attention !
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