

Alessandro Papitto OA Roma

Feeling the pull and pulse of relativistic magnetospheres Les Houches 10.4.2025

The interaction between the relativistic pulsar wind and the accretion flow in transitional systems

A millisecond pulsar surrounded by an accretion disk

cartoon from Veledina, Nättilä, Beloborodov 2019

Swinging between rotation and accretion power in transitional ms pulsars

Archibald+ 2009; Papitto+ 2013; Bassa+ 2014; See review by Papitto & de Martino 2022

Papitto+ 2013; Linares+ 2014; ; See review by Papitto & de Martino 2022 (arXiv:2010.09060)

Transitional Millisecond Pulsars

Archibald+ 2009; Papitto+ 2013; Bassa+ 2014; Linares+ 2014; See review by Papitto & de Martino 2022

What powers the sub-luminous disk state emission?

- Enshrouded rotation-pwd pulsar
- Propellering pulsar
- Low Mdot accretion

Coti Zelati+2014, **Takata**+ 2015, **Papitto**+ 2014, 2015, **Linares**+ 2014, **Campana**+ 2016, **Papitto & de Martino** 2022

A sub-luminous disk state

Accretion-power features

Disk emission lines X-ray pulsations & sudden variability Bright compact radio jets

A sub-luminous disk state

Accretion-power features

Disk emission lines X-ray pulsations & sudden variability Bright compact radio jets

Rotation-power features

Bright gamma-ray emission (as bright as Xrays) Radio pulsar-like spin down (within 5%)

Optical/UV pulsations from a transitional millisecond pulsar

Ambrosino, Papitto+ 2017, Nature Astr.; Zampieri+ 2019; Karpov+ 2019; Miraval Zanon+ 2022

Stunningly bright optical pulsations accretion-powered?

Cyclotron emission from accretion column?

$$E_{cvc} = 1 (B / 10^8 \text{ G}) \text{ eV}$$

$$L_{\rm cyc} = A_{\rm spot} \int_{\nu_l}^{\nu_h} (2\pi kT_e \nu^2 / 3c^2) d\nu$$

= 2.9 × 10²⁹ $\left(\frac{A_{\rm spot}}{10^{12} \,{\rm cm}^2}\right) \left(\frac{kT_e}{100 \,{\rm keV}}\right) {\rm erg s}^{-1}$

PSR J1023 L_{pulsed} = few x 10³¹ erg/s **50x beaming required**

Updated from Ambrosino, Papitto+ 2017, Nature Astr.

A single process to explain optical/UV/X-ray pulses

Similar shape and simultaneous disappearance during low modes

Papitto+ 2019

A single process to explain optical/UV/X-ray pulses

Energy spectrum of pulsed emission suggests single synchrotron process

Papitto+ 2019; Miraval Zanon+ 2022

A single process to explain optical/UV/X-ray pulses

Polarization degree of X-rays in high mode = (12+/-3)% Pol. Angle = (-2+/-9)° consistent with optical band (-3.9+/-0.7)° SED of polarized and pulsed emission compatible from the optical to Xrays

Baglio+ 2025, arXiv: 2412.13260

X-ray/optical/polarization

Energy band	Average emission			High mode		
(keV)	$P_{\rm X}~(\%)$	$PA_{\rm X}$ (°)	$\chi^2(\mathrm{dof})$	$P_{\rm X, H}$ (%)	$PA_{\rm X,H}$ (°)	$\chi^2(dof)$
2-6	11 ± 3	-7 ± 8	175(166)	12 ± 3	-2 ± 9	164(166)
2 - 3	8 ± 5	20 ± 20	32(31)	8 ± 6	10 ± 20	25(31)
3–6	15 ± 4	-9 ± 8	120(121)	15 ± 5	-3 ± 9	120(121)

Baglio+ 2025, arXiv: 2412.13260

Coexistence of Rotation & Accretion-power

Parfrey+ 2017; Veledina, Nättila, Beloborodov 2019; Papitto+ 2019

Coexistence of Rotation & Accretion-power

Synchrotron \rightarrow Optical/X-rays Self Synchrotron Compton \rightarrow Gamma-rays

Veledina, Nättila, Beloborodov 2019; Papitto+ 2019, Papitto & Torres 2013, 2014

Coexistence of Rotation & Accretion-power

Pulses from the interaction between the <u>pulsar striped wind and the mass in-flow</u> <u>See Valentina Richard-Romei's talk later on</u> Pulsar wind terminated by the accretion disk at r≈100 km

Cerutti & Beloborodov 2017; Papitto+ 2019; Veledina, Nättila, Beloborodov 2019

Optical pulse lags X-ray pulse by ~ 100-200 µs

Illiano, Papitto+ 2017

What drives the high/low mode switching?

Accretion flow enters the light cylinder in the low mode.

- propeller inhibition of accretion
- Switch off of pulsar wind related emission

Radio and mm flares during X-ray low modes

Bogdanov+ 2018; Baglio+ (incl. Papitto) 2023

Arbitrary flux

Papitto+ 2019; Baglio+ 2023 (incl. Papitto); Baglio+ (incl. Papitto) 2025

Open questions

Can simulations of the pulsar wind/disk interaction reproduce the observed patterns?

What causes high/low mode variability?

Why are transitional ms pulsars different than accreting/rotationpowered systems?

The MSP@OAR team

www.oa-roma.inaf.it/heag

Supprted by CARIPLO/CdP SPES grant 2023-2560, PRIN MUR 2020 (GEMS - 2020BRP57Z) & INAF Large Grant (FANS, PULSE-X)

Filippo **Ambrosino**, Caterina **Ballocco**, Giulia **Illiano**, Riccardo **La Placa**, Christian **Malacaria**, Arianna **Miraval Zanon**, Alessandro **Papitto**