

A parametric study of population inversions in relativistic plasmas through nonresonant interactions with Alfvén waves and their applications to Fast Radio Bursts

Long & Pe'er, 2025, MNRAS, 538, 1029; Long & Pe'er, 2025, in prep.

April 2025

Explaining FRBs: the synchrotron maser

- FRB brightness temperature: ~10³⁶ k
- Conditions for sync. maser:

 electron population inversion
 strong magnetic field
 interaction between pop. inverted e + EM waves → stimulated
 emission (maser)
- <u>Population inversion</u>: $\frac{\partial F}{\partial v_{\perp}} > 0$ <u>- does not require a shock wave !</u>

Non-resonant interaction between Alfvenic waves and relativistic (hot) particles: complete formula

 $rac{\partial F}{\partial t}$

(Stix, 92; Yoon+09)

$$\leftarrow \text{ To NS} \qquad (T, n, B_0 \rightarrow \sigma = \Omega^2 / \omega_p^2)$$

$$\Omega = eB_0 / mc$$

$$F_0(p_{\parallel}, p_{\perp}, \theta_0) = \text{Maxwell-Juttner}$$

<u>Non-resonance condition:</u> Origin : starquakes $K^2\pi/\xi R_{*,} \quad \xi - fraction of NS radius$ Waves in NS crust: $\xi \sim 10^{-2} - 10 R_{*,6}^{-1}$

$$= \frac{e^{2}}{4} \sum_{l=\pm 1} \int d\mathbf{k} \frac{1}{p_{\perp}} \left[\left(1 - \frac{k_{\parallel} p_{\parallel}}{\gamma m \omega} \right) \frac{\partial}{\partial p_{\perp}} + \frac{k_{\parallel} p_{\perp}}{\gamma m \omega} \frac{\partial}{\partial p_{\parallel}} \right] \\ \times \left\{ p_{\perp} \left[\pi \delta \left(\omega - l \omega_{c} - \frac{k_{\parallel} p_{\parallel}}{\gamma m} \right) |E_{k}|^{2} \qquad \text{resonance} \right. \\ \left. - \frac{\partial}{2 \partial \omega} \left(PV \left(\frac{1}{\omega - l \omega_{c} - \frac{k_{\parallel} p_{\parallel}}{\gamma m}} \right) \right) \frac{\partial |E_{k}|^{2}}{\partial t} \right] \qquad \text{non res.} \\ \times \left[\left(1 - \frac{k_{\parallel} p_{\parallel}}{\gamma m \omega} \right) \frac{\partial}{\partial p_{\perp}} + \frac{k_{\parallel} p_{\perp}}{\gamma m \omega} \frac{\partial}{\partial p_{\parallel}} \right] F \right\}. \qquad (1)$$

K $\|B_0 - A\|$ wave vector, ω its freq.

Strong B₀ field:
$$\omega_c = \Omega/\gamma \gg \{\omega, \frac{k_{\parallel}p_{\parallel}}{\gamma m}\}$$

 \rightarrow No resonance

Non-resonant interaction between Alfvenic waves and relativistic (hot) particles: strong B field

Any T (relativistic/ non. rel), $\frac{\partial F}{\partial t} = \frac{7.7 \times 10^{-4}}{\omega_{c.9}^2} \left\{ \left(\frac{I_1 \left(2 + \frac{q_\perp^2}{\gamma^2} \right)}{\gamma} - 2 \frac{I_2 q_{\parallel}}{\gamma^2} \right) \frac{\partial F}{\partial q_{\parallel}} \right.$ I=+-1 harmonics $+ \left[\frac{1}{q_{\perp}} \left(I_3 \left(1 + 2 \frac{q_{\perp}^2}{\gamma^2} \right) + \frac{I_2 q_{\parallel}^2}{\gamma^2} - \frac{I_1 q_{\parallel} \left(2 + \frac{q_{\perp}^2}{\gamma^2} \right)}{\gamma} \right) \right]$ Parallel advection $- \left. rac{I_2 q_\perp}{\gamma^2} \right| rac{\partial F}{\partial q_\perp}$ Perpendicular advection $+ rac{I_2 q_\perp^2}{\gamma^2} rac{\partial^2 F}{\partial q_\perp^2}$ Parallel diffusion $+\left(I_3+rac{I_2q_\parallel^2}{\gamma^2}-2rac{I_1q_\parallel}{\gamma}
ight)rac{\partial^2 F}{\partial q_\perp^2}$ Perpendicular diffusion $+\left(2rac{I_1q_{\perp}}{\gamma}-2rac{I_2q_{\perp}q_{\parallel}}{\gamma^2}
ight)rac{\partial^2 F}{\partial q_{\parallel}\partial q_{\perp}}igg\},$ (3) Mixed where the factor $\frac{7.7 \times 10^{-4}}{\omega_c^2 \alpha} = \frac{e^2}{4c^2 m^2 \omega_c^2}, q = p/mc = \gamma \frac{v}{c} = \gamma \beta$, Hierarchy: $I_2 > I_1 > I_3$ ($v_A < c$) and $I_1 = \int d\mathbf{k} \frac{\partial |E_k|^2}{\partial t} \frac{ck_{\parallel}}{\omega}$, $I_2 = \int d\mathbf{k} \frac{\partial |E_k|^2}{\partial t} \frac{c^2 k_{\parallel}^2}{\omega^2}$ and $I_3 =$ $[I_2/I_1 = c/v_{\Delta} \rightarrow 1]$ $\int d\mathbf{k} \frac{\partial |E_k|^2}{\partial t}$. Equation (3) is correct in the limit of strong

Formation of a population inversion

Formation of a population inversion

Dist. change, $\partial F_0 / \partial t$

Level of population inversion (crescent shape) is determined by the mixed term

Population inversion: magnetization

Lower magnetization – higher ratio I_2/I_1 – par. advec. dominates – less inversion

Results: fraction of energy available for masing

High magnetization (σ >1) \rightarrow f_{inv} >~10⁻²

 σ_{rel} = σ / γ_{avg}

Results: fraction of energy available for masing

f_{inv} reach few %; slightly decreases with temperature

Comparative models

Physical scenario: pair wind outside the light cylinder

(Lyubarsky, 21)

light cylinder $R_{1C} = cP/2\pi = 5 * 10^9 P cm$

For B~1/R at R>R_{LC}, $R_{FRB} \sim 10^{11} P^{-2} cm >= R_{LC}$, smaller than for shocks Prediction:

-consistent with the restriction due to damping (see Sobacchi's talk) for $\Gamma_{\rm B} >> 1$

- > Non-resonant interaction between Alfven waves and hot (relativistic) plasma (θ >10⁻²) produce population inversion for σ >10⁻⁴.
- > Total energy fraction f_{inv} ~0.1 for high magnetization, σ >10
- > Time scale to reach inversion: t~ Γ^{-1} s comparable with magnetar period
- $\begin{array}{l} \blacktriangleright & \mbox{Model for synchrotron maser emission in FRBs:} \\ & \mbox{Cloud at} \\ & \mbox{R}^{\mbox{FRB}} \ \mbox{\ } 10^{11} \ \mbox{cm} \mbox{\ } \mbox{\ } R_{\mbox{\ } LC}, \\ & \mbox{\ } n \ \mbox{\ } \mbox{\ } n^{-2} \ \mbox{\ } m^{-3} \end{array}$

- Higher frequencies: suppressed, as require masing inside the light cylinder, where η is small (B₀ large inside magnetosphere) – no (small) population inversion
- ✓ Lower frequencies: suppressed, as Alfven wave freq. ~ Ω → no non-resonant interaction

Long & Pe'er, 2025, MNRAS, 538, 1029; Long & Pe'er, 2025, in prep.