Particle-in-cell electromagnetic solver for QED polarization in super-strong magnetic fields approach

Mahmoud Alawashra with J. Benáček, M. Pohl and M.V. Medvedev

Relativistic magnetosphere workshop (Ecole de physique des Houches)

9th April 2025

Outline

- Introduction
- Nonlinear Maxwell's equations
- Implementation in PIC
- Validation and results

Introduction

Magnetars have surface magnetic field strengths exceed **10¹⁴ G**

4

QED effects become relevant above the quantum fields limit:

$$E_Q = m_e^2 c^3 / \hbar e$$

$$B_Q = m_e^2 c^3 / \hbar e \sim 4.4 \times 10^{13} \, \mathrm{G}$$

Quantum birefringence

QED effect in pulsars and magnetars

- QED corrections result in the deflection of the propagation and the change of the polarization mode of the waves propagating in the pulsar magnetosphere. (D. H. Kim, C. M Kim and S. P. Kim (2024))
- Mode conversion at the vacuum resonance could be at play for the magnetars observed by IXPE. (Lai (2023), Kelly et al. (2024), Taverna and Turolla (2024))

Kelly et al. (2024)

PIC studies of the NS Magnetosphere

- Pulsars Polar-Cap and Magnetosphere using PIC simulations (Cruz+2021b, Benáček+ 2024b, Chernoglazov 2024).
- Large-scale, realistic simulation of a magnetar's twisted magnetosphere (Chen & Beloborodov (2017)).
- PIC simulations use Linear Maxwell's equations: One can extend it to non-linear Maxwell's equations for the super-strong magnetic fields.

Chen & Beloborodov (2017)

Nonlinear Maxwell's equations

QED correction in the one-loop approximation

• The Heisenberg-Euler Lagrangian density encapsulates all orders of the one-loop photon-photon interaction:

$$\mathcal{L}_{\rm HE} = \frac{m_{\rm e}c^2}{8\pi^2} \left(\frac{m_{\rm e}c}{\hbar}\right)^3 \int_0^\infty \frac{e^{-\eta}}{\eta^3} \left[-\left(\eta a \cot \eta a\right) \left(\eta b \coth \eta b\right) + 1 - \frac{\eta^2}{3} (a^2 - b^2) \right] \mathrm{d}\eta$$

• The parameters are

W. Heisenberg and H. Euler (1936)

$$a = \frac{E}{E_{\rm Q}}, \qquad b = \frac{B}{B_{\rm Q}},$$

• The general analytical Euler–Lagrange equations are **not known**. Analytical solutions are only possible for the case of an arbitrary strong magnetic field and a very small electric field and vice versa. (J. Lundin (2010), M. V. Medvedev (2023))

Nonlinear Maxwell's equations strong magnetic field case

• The first pair of Maxwell's equations, $\partial_{\nu}\hat{F}^{\mu\nu} = 0$, is unaffected by the QED corrections:

$$\nabla \cdot \mathbf{B} = 0,$$
$$\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0.$$

Nonlinear Maxwell's equations strong magnetic field case

Modified Gauss' law:

$$(-1+C_{\delta})\nabla\cdot\mathbf{E} + \frac{C_{\mu}}{B^2}\mathbf{E}\cdot\nabla\left(\frac{\mathbf{B}^2-\mathbf{E}^2}{2}\right) + \frac{C_{\epsilon}}{B^2}\mathbf{B}\cdot\nabla(-\mathbf{B}\cdot\mathbf{E}) = -4\pi\rho$$

• The coupling scalars are magnetic field dependence

Nonlinear Maxwell's equations strong magnetic field case

• Modified Ampere's law:

$$(-1+C_{\delta})\left[\frac{1}{c}\frac{\partial}{\partial t}\mathbf{E}-\nabla\times\mathbf{B}\right] + \frac{C_{\mu}}{B^{2}}\left[\mathbf{E}\frac{1}{c}\frac{\partial}{\partial t}\left(\frac{\mathbf{B}^{2}-\mathbf{E}^{2}}{2}\right) + \mathbf{B}\times\nabla\left(\frac{\mathbf{B}^{2}-\mathbf{E}^{2}}{2}\right)\right] \\ + \frac{C_{\epsilon}}{B^{2}}\left[\mathbf{B}\frac{1}{c}\frac{\partial}{\partial t}(-\mathbf{B}\cdot\mathbf{E}) - \mathbf{E}\times\nabla(-\mathbf{B}\cdot\mathbf{E})\right] = \frac{4\pi}{c}\mathbf{j}.$$

• The coupling scalars are Magnetic field dependence

Implementation in PIC

PIC loop modification

Nonlinear Ampere's law strong magnetic field case

$$\gamma_{\mathscr{F}} \left[\frac{1}{c} \frac{\partial}{\partial t} \mathbf{E} - \nabla \times \mathbf{B} \right] + \gamma_{\mathscr{F}} \left[\mathbf{E} \frac{1}{c} \frac{\partial}{\partial t} \left(\frac{\mathbf{B}^2 - \mathbf{E}^2}{2} \right) + \mathbf{B} \times \nabla \left(\frac{\mathbf{B}^2 - \mathbf{E}^2}{2} \right) \right] \\ + \gamma_{\mathscr{G}} \left[\mathbf{B} \frac{1}{c} \frac{\partial}{\partial t} (-\mathbf{B} \cdot \mathbf{E}) - \mathbf{E} \times \nabla (-\mathbf{B} \cdot \mathbf{E}) \right] = \frac{1}{c} \mathbf{j}.$$

$$egin{aligned} &\gamma_{\mathscr{F}} = -(1-C_\delta)/(4\pi), \ &\gamma_{\mathscr{FF}} = C_\mu/(4\pi B^2), \ &\gamma_{\mathscr{GG}} = C_arepsilon/(4\pi B^2), \end{aligned}$$

J. Lundin (2010) M. V. Medvedev (2023)

QED polarization field solver

$$\frac{\partial \mathbf{E}}{\partial t} = A^{-1} \left(\frac{1}{c} \mathbf{j} - \mathbf{Q} \right)$$

$$A_{ij} = \frac{1}{c} \left[\gamma_{\mathcal{F}} \delta_{ij} - \gamma_{\mathcal{F}\mathcal{F}} E_i E_j - \gamma_{\mathcal{G}\mathcal{G}} B_i B_j \right]$$
$$\gamma_{\mathcal{F}\mathcal{F}} = \frac{-1 + C_{\delta}(b)}{4\pi} \qquad \gamma_{\mathcal{F}\mathcal{F}} = \frac{C_{\mu}(b)}{4\pi B^2} \qquad \gamma_{\mathcal{G}\mathcal{G}} = \frac{C_{\epsilon}(b)}{4\pi B^2}$$

$$\begin{aligned} Q_{\mathbf{x}} = & \gamma_{\mathcal{F}} \left[-\left(\frac{\partial B_{\mathbf{z}}}{\partial y} - \frac{\partial B_{\mathbf{y}}}{\partial z}\right) \right] \\ &+ \gamma_{\mathcal{FF}} \left[\frac{1}{c} E_{\mathbf{x}} \left(\mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial t} \right) + B_{\mathbf{y}} \left(\mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial z} - \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial z} \right) - B_{\mathbf{z}} \left(\mathbf{B} \cdot \frac{\partial \mathbf{B}}{\partial y} - \mathbf{E} \cdot \frac{\partial \mathbf{E}}{\partial y} \right) \right] \\ &+ \gamma_{\mathcal{GG}} \left[-\frac{1}{c} B_{\mathbf{x}} \left(\mathbf{E} \cdot \frac{\partial \mathbf{B}}{\partial t} \right) + E_{\mathbf{y}} \left(\mathbf{E} \cdot \frac{\partial \mathbf{B}}{\partial z} + \mathbf{B} \cdot \frac{\partial \mathbf{E}}{\partial z} \right) - E_{\mathbf{z}} \left(\mathbf{E} \cdot \frac{\partial \mathbf{B}}{\partial y} - \mathbf{B} \cdot \frac{\partial \mathbf{E}}{\partial y} \right) \right] \end{aligned}$$

Alawashra, Benáček, Pohl, Medvedev (arXiv:2503.14387, submitted)

Validation and results

1D3V PIC simulation with superstrong magnetic fields

Simulation parameters

Parameter	Value
Magnetic field intensities $B/B_{\rm Q}$	100, 1000, and 10000
Magnetic field angles θ	$\pi/30, \pi/4, \text{ and } \pi/2$
Frequency ratio $\omega_{\rm c}/\omega_{\rm p}$	3
Initial thermal velocity $v_{\rm t}/c$	0.05
Simulation length L/Δ	20000
Simulation time $\omega_{\rm p} t_{\rm end}$	800
Skin depth resolution $\Delta/d_{\rm e}$	0.05
Time step size $\omega_{\rm p}\Delta t$	0.02

 \rightarrow Plasma birefringence

Alawashra, Benáček, Pohl, Medvedev (arXiv:2503.14387, submitted)

Black line: analytical solution M. V. Medvedev (2023)

Magnetic field strength dependence

20

SUMMARY

- We presented **the first QED polarization PIC solver**, which allows systematic studies of plasma systems with super-critical magnetic fields.
- QED corrections introduce **birefringence between the O- and X-mode** polarized waves with increasing magnetic field intensity.
- This new numerical tool will be improved and applied to model electromagnetic fields in **magnetar magnetospheres**.

Thank you