### THE ROLE OF FALLBACK DISCS IN THE LONG-TERM EVOLUTIONARY LINKS BETWEEN THE ISOLATED NEUTRON STAR POPULATIONS

Ali Arda Gençali & Ünal Ertan Sabancı Üniversitesi

> Sabancı Iniversitesi

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres











# **Isolated Neutron Star Populations**

- Anomalous X-ray Pulsars (AXPs)
- Soft Gamma Repeaters (SGRs)
- Dim Isolated Neutron Stars (XDINs)
- "High-Magnetic-Field" Radio Pulsars (HBRPs)
- Central Compact Objects (CCOs)
- Rotating Radio Transients (RRATs)

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres

### Long-period Pulsars (LPPs) – Long-period Radio Transients (LPTs)







# Birth Rate Problem

### • <u>Galactic Supernova Rate:</u> $\beta_{\text{CCSN}} \sim (1.9 \pm 1.1) \text{ century}^{-1}$

(Diehl et al., 2006; Faucher-Giguère & Kaspi, 2006; Keane & Kramer, 2008; Popov et al., 2006; Rozwadowska, Vissani, & Cappellaro, 2021)

### • $\beta_{\text{RRATs}} \gtrsim \beta_{\text{PSRs}} \sim \beta_{\text{XDINs}} \sim \beta_{\text{CCSN}} \Rightarrow \beta_{\text{TOT}} > \beta_{\text{CCSN}}$

(Vranesevic et al. 2004; Lorimer 2005; Faucher-Giguére & Kaspi 2006; Popov et al. 2006; Kean & Kramer 2008)

| $\beta_{\rm PSR}, n_{\rm e}$ | PSRs          | RRATs               | XDINSs        | Magnetars           | Total                | CCSN rate     |
|------------------------------|---------------|---------------------|---------------|---------------------|----------------------|---------------|
| FK06, NE2001                 | $2.8\pm0.5$   | $5.6^{+4.3}_{-3.3}$ | $2.1 \pm 1.0$ | $0.3^{+1.2}_{-0.2}$ | $10.8^{+7.0}_{-5.0}$ | $1.9 \pm 1.1$ |
| L+06, NE2001                 | $1.4 \pm 0.2$ | $2.8^{+1.6}_{-1.6}$ | $2.1 \pm 1.0$ | $0.3^{+1.2}_{-0.2}$ | $6.6^{+4.0}_{-3.0}$  | $1.9 \pm 1.1$ |
| L+06, TC93                   | $1.1 \pm 0.2$ | $2.2^{+1.7}_{-1.3}$ | $2.1 \pm 1.0$ | $0.3^{+1.2}_{-0.2}$ | $5.7^{+4.1}_{-2.7}$  | $1.9 \pm 1.1$ |
| V+04, NE2001                 | $1.6 \pm 0.3$ | $3.2^{+2.5}_{-1.9}$ | $2.1 \pm 1.0$ | $0.3^{+1.2}_{-0.2}$ | $7.2^{+5.0}_{-3.4}$  | $1.9 \pm 1.1$ |
| V+04, TC93                   | $1.1 \pm 0.2$ | $2.2^{+1.7}_{-1.3}$ | $2.1 \pm 1.0$ | $0.3^{+1.2}_{-0.2}$ | $5.7^{+4.1}_{-2.7}$  | $1.9 \pm 1.1$ |

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres

### 9 April 2025

### (Kean & Kramer 2008)

# Birth Rate Problem

### • <u>Galactic Supernova Rate:</u> $\beta_{\text{CCSN}} \sim (1.9 \pm 1.1) \text{ century}^{-1}$

(Diehl et al., 2006; Faucher-Giguère & Kaspi, 2006; Popov et al., 2006; Keane & Kramer, 2008; Rozwadowska, Vissani, & Cappellaro, 2021)

•  $\beta_{\text{RRATS}} \gtrsim \beta_{\text{PSRS}} \sim \beta_{\text{XDINS}} \sim \beta_{\text{CCSN}} \Rightarrow \beta_{\text{TOT}} > \beta_{\text{CCSN}}$ 

(Vranesevic et al. 2004; Lorimer 2005; Faucher-Giguére & Kaspi 2006; Popov et al. 2006; Kean & Kramer 2008)

 Evolutionary links between these NS populations 2016; Johnston & Karastergiou, 2017; Beniamini et al., 2019; Jawor & Tauris, 2022)

(Faucher-Giguère & Kaspi, 2006; Popov et al., 2006; Keane & Kramer, 2008; Gullón et al., 2014; Kaspi & Kramer,





# Magnetar Model Fallback Disc Model

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres

# Models



# Very Brief Introduction of Magnetar Model

- Rotating NS in a vacuum
- $B_0 \sim 6.4 \times 10^{19} \sqrt{P\dot{P}} \gtrsim 10^{14} \text{ G}$
- Field Decay —> Heating of the Crust —> Observed  $L_X$

(Duncan & Thompson, 1992; Thompson & Duncan, 1995)

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres





- Disc-field interaction
- Dominant Torque -> Disc Torque (l'<sub>D</sub>)

$$\Gamma_{\rm D} = \frac{\mu^2}{r_{\rm in}^3} \left(\frac{\Delta r}{r_{\rm in}}\right), \ \mu = B I$$

• Source of  $L_X$ 

# $L_{\text{acc}} = GMM_*/R$ and $L_{\text{cool}} \longrightarrow L_X = L_{\text{acc}} + L_{\text{cool}}$

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres

# Fallback Disc Model



(Ertan & Çalışkan 2006; Ertan et al. 2007; Ertan & Erkut 2008; Ertan et al. 2009)





# Fallback Discs

 After SNe, some of the ejected matter could fall back (Chevalier, 1989; Colgate, 1971; Woosley et al., 2002; Zel'dovich et al., 1972)

• If this matter has sufficient angular momentum, a fallback disc could form around the newly born NS (Michel & Dessler 1981; Michel 1988; Mineshige et al. 1997; Perna et al. 2014)

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres





- (Chatterjee et al. 2000)
- NS populations too (Alpar 2001)

Feeling the pull and the pulse of relativistic magnetospheres

# Fallback Disc Model

### • Proposed to explain the observed P clustering and $L_{\rm X}$ of AXPs

The model could explain the observed properties of other young





- Solving the disc diffusion equation with  $\alpha$  (0.045) prescription
- The model includes the effects of:
  - X-ray irradiation of the disc,  $C = (1 7) \times 10^{-4}$
  - Contribution of the  $L_{cool}$  into the irradiation (Page et al. 2006, 2009)
  - Inactivation of the disc at low temperatures  $(T_{\rm P} = 50 150 {\rm K})$

Feeling the pull and the pulse of relativistic magnetospheres

Ali Arda Gençali

# Fallback Disc Model

(Ertan & Çalışkan 2006; Ertan et al. 2007; Ertan & Erkut 2008; Ertan et al. 2009)



## • $R_{\text{in,max}}^{25/8} |1 - R_{\text{in,max}}^{-3/2}| \simeq 1.26 \alpha_{-1}^{2/5} M_{1.4}^{-7/6} \dot{M}_{\text{in,16}}^{-7/20} \mu_{30} P^{-13/12}$

• 
$$R_{\text{in, max}} = r_{\text{in, max}}/r_{\text{co}}, \quad \alpha_{-1} = (\alpha/0)$$

•  $\dot{M}_{in,16} = \dot{M}_{in}/(10^{16} \text{ g s}^{-1}), \quad \mu_{30} = \mu/(10^{30} \text{ G cm}^3)$ 

### • $r_{\rm in} = r_{\eta} = \eta r_{\rm in,max}$ , where $\eta \lesssim 1$

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres

Inner Disc (*r*<sub>in</sub>)

0.1),  $M_{14} = (M/1.4 M_{\odot})$ 

Ertan Ü., 2017, MNRAS, 466, 175 Ertan Ü., 2018, MNRAS, 479, L12 Ertan Ü., 2021, MNRAS, 500, 2928







# **Rotational Phases**

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres



# Strong Propeller (SP) Phase



# No mass accretion ( $M_* = 0$ ) **Pulsed Radio emission is allowed!**



Feeling the pull and the pulse of relativistic magnetospheres

Ali Arda Gençali

 $|r_n = r_{in} > 1.26 r_{co} = r_1|$ 

•  $L_{\rm acc} = 0$  and  $L_{\rm X} = L_{\rm cool}$ 

9 April 2025



# Weak Propeller (WP) Phase

### Mass accretion from $r_{in} = r_{co}$ **Ordinary Radio Pulses are Expected to** be quenched! • $L_{\rm X} = L_{\rm acc} + L_{\rm cool}$ • $\Gamma_{\rm SU} \simeq \dot{M}_* \sqrt{GMr_{\rm in}}$ , $(\dot{M}_* = \dot{M}_{\rm in})$ • $\Gamma_{tot} = \Gamma_D + \Gamma_{SU} + \Gamma_{dip}$

Feeling the pull and the pulse of relativistic magnetospheres

Ali Arda Gençali

# $r_{\rm co} = r_1 \ge r_{\rm in}$





9 April 2025



# LONG-TERM EVOLUTIONARY LINKS BETWEEN THE ISOLATED NEUTRON STAR POPULATIONS

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres





Feeling the pull and the pulse of relativistic magnetospheres

### 9 April 2025



Feeling the pull and the pulse of relativistic magnetospheres

### 9 April 2025





Feeling the pull and the pulse of relativistic magnetospheres





Feeling the pull and the pulse of relativistic magnetospheres

### 9 April 2025



# How could sources emit Radio Pulses below the Pulsar Death Valley?

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres



# How could sources emit Radio Pulses below the Pulsar Death Valley?

the magnetic poles of the star (Parfrey, Spitkovsky & Beloborodov 2016, 2017)



Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres

### Enhancement of the magnetic flux of the open field lines through

$$r_2\left(\frac{r_{\rm LC}}{r_{\rm in}}\right)^2 L_0$$





Feeling the pull and the pulse of relativistic magnetospheres







Feeling the pull and the pulse of relativistic magnetospheres

9 April 2025

# Conclusions

- - As a natural outcome of differences in the initial conditions  $P_0, M_d$ , and  $B_0$  in a single picture
  - Continuous  $B_0$  distribution (a few  $10^9 10^{13}$  G)
- Our simulations indicate significant evolutionary connections between the NS families especially **RRATs**, **XDINs**, and **RPs**
- **RRATs** have evolutionary connections with almost all other populations (except persistent AXP/SGRs and LPPs)
- Our detailed model results provide concrete support to earlier predictions to account for the long-lasting birth-rate problem

Ali Arda Gençali

The rotational properties of isolated NS populations can be reproduced:



# **Bonus Conclusion**

### Our results are in good agreement with the estimated braking indices (n) of the sources.

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres



# Thank you

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres



Ali Arda Gençali | Feeling the pull and the pulse of relativistic



# **Theoretical Cooling Curves**



Ali Arda Gençali



# Effects of the Initial Conditions on the Long-term Evolution

### • Initial Period: $P_0$

• Disc Mass:  $M_{d}$ 

### Magnetic Dipole Field Strength: B<sub>0</sub>

Feeling the pull and the pulse of relativistic magnetospheres

Ali Arda Gençali



# Initial Period (Pn)

### **Model Parameters**

 $\alpha = 0.045, T_{\rm P} = 50$  K,  $C = 1 \times 10^{-4}$  $\Delta r/r_{\rm in} = 0.25, \ \eta = 0.7, \ \xi = 0.7$ **Initial Conditions**  $P_0 = 0.03 - 7$  s

 $M_{\rm d} = 9.6 \times 10^{-6} M_{\odot}$ 

 $B_0 = 6 \times 10^{11} \text{ G}$ 

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres







# Disc Mass $(M_{\rm d})$

### **Model Parameters**

 $\alpha = 0.045, T_{\rm P} = 50$  K,  $C = 1 \times 10^{-4}$  $\Delta r/r_{\rm in} = 0.25, \ \eta = 0.7, \ \xi = 0.7$ **Initial Conditions**  $P_0 = 0.3 \text{ s}$  $M_{\rm d} = 1.6 \times 10^{-6} - 6.4 \times 10^{-5} M_{\odot}$  $B_0 = 6 \times 10^{11} \text{ G}$ 

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres





### **Magnetic Dipole Field** Strength, B<sub>0</sub> **Model Parameters**

 $\alpha = 0.045, T_{\rm P} = 50$  K,  $C = 1 \times 10^{-4}$  $\Delta r/r_{\rm in} = 0.25, \ \eta = 0.7, \ \xi = 0.7$ 

### **Initial Conditions** $P_0 = 0.3 \text{ s}$ $M_{\rm d} = 9.6 \times 10^{-6} M_{\odot}$ $B_0 = 2 \times 10^{10} - 1 \times 10^{13} \text{ G}$

Ali Arda Gençali

Feeling the pull and the pulse of relativistic magnetospheres





