Multi-wavelength emission and particle acceleration in pulsar magnetospheres

J. Pétri D. Mitra S. Guillot L. Guillemot and many other

CNRS, Observatoire astronomique de Strasbourg, France National Centre for Radio Astrophysics, India IRAP, CNRS, Toulouse, France LPC2E, Orléans, France

7th April 2025

Emission : Objectives & Methods

- 2 Emission sites and multi-wavelength atlas
- 3 Multi-wavelength pulse profile fitting
- 4 Particle acceleration : Objectives & Methods
- 5 Application to a rotating dipole
- 6 Conclusions & Perspectives

Pulsed emission

- constrain the geometry of the pulsar and observer line of sight.
- identify the radio, X-ray and γ -ray emission mechanisms.

Methods

- use young radio-loud γ -ray pulsar light-curves.
- radio emission altitude and angle constrained by RVM¹ model.
- γ -ray emission from the striped wind.

Results

- consistent radio and γ -ray geometries.
- localisation of non-thermal X-ray emission height.

Université

^{1.} Rotating Vector Model

2 Emission sites and multi-wavelength atlas

- 3 Multi-wavelength pulse profile fitting
- 4 Particle acceleration : Objectives & Methods
- 5 Application to a rotating dipole
- 6 Conclusions & Perspectives

Possible sites for pulsed emission

Fig. - Emission models (Breed et al.).

Fig. - Pulsar striped wind current sheet.

Basic picture

- magnetosphere filled with e[±] plasma corotating with the neutron star up to r_L.
- corotation charge $\rho_{\rm GJ} = -2 \, \varepsilon_0 \, \vec{\Omega} \cdot \vec{B}$.
- no acceleration in regions where $\rho = \rho_{\rm GJ}$ because $E_{||} = 0$.
- but acceleration in regions where $ho \neq
 ho_{GJ}$ because $E_{\parallel} \neq 0$.

Four important sites

- polar cap : star surface R.
- slot gap : from R to $r_{\rm L}$.
- outer gap : from null-line to $r_{\rm L}$.
- striped wind : outside $r_{\rm L}$.

Location of gaps tells you where emission comes from.

Jérôme Pétri (ObAS)

Multi-wavelength emission and particle acceleration in

Emission model

Fig. - Pulsar striped wind current.

Fig. – Emission models.

Essentially three parameters to fit

- magnetic **dipole inclination** α .
- **2** observer line of sight inclination $\zeta (= \alpha + \beta)$.
- **(a)** possible **shift in phase** ϕ_s between observation and model.

Computation of radio, X-ray and γ -ray pulse profile depending on α and $\zeta.$

Radio atlas (polar cap) depending on $\{\alpha, \zeta\}$

Fig. – Radio from polar cap region.

Atlas of radio pulse profiles for $\alpha = \{15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}\}$ from left to right column and $\zeta = \{0^{\circ}, ..., 90^{\circ}\}$ in steps of 10° in the format $\{\alpha, \zeta\}$.

X-ray atlas (slot gap) depending on $\{\alpha, \zeta\}$

Fig. – X-ray from slot cap region.

X-ray light curves for $\alpha = \{15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}\}$ from left to right column and $\zeta = \{0^{\circ}, ..., 90^{\circ}\}$ in steps of 10° in the format $\{\alpha, \zeta\}$.

γ -ray atlas (striped wind) depending on $\{\alpha,\zeta\}$

Fig. – γ -ray from striped wind (outside the magnetosphere).

Atlas of γ -ray light curves for $\alpha = \{15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}\}$ from left to right column and $\zeta = \{0^{\circ}, ..., 90^{\circ}\}$ in steps of 10° in the format $\{\alpha, \zeta\}$.

- 2 Emission sites and multi-wavelength atlas
- Multi-wavelength pulse profile fitting
- 4 Particle acceleration : Objectives & Methods
- 5 Application to a rotating dipole
- 6 Conclusions & Perspectives

Young pulsars : radio polarization and γ -rays

Fig. – Best fit from polarization and gamma-rays.

(Pétri & Mitra, 2021)

Jérôme Pétri (ObAS)

Université de Strasbourg

Young pulsar : fit from γ -rays only

Fig. – Best fit parameters and γ -ray light-curves of the young radio loud γ -ray pulsar without RVM fits.

(Pétri & Mitra, 2021), for MSP see (Benli et al., 2021)

Jérôme Pétri (ObAS)

Multi-wavelength emission and particle acceleration ir

Strategy

- find the angles (α, ζ) from joint radio and γ -ray.
- a good fit given by $(\alpha, \zeta) = (45^{\circ}, 38^{\circ}).$
- adjust the X-ray emission site to fit the X-ray pulse profile.

Observations and results

Fig. – Joint radio and γ -ray fit.

Fig. – Fitted light-curves in X-ray.

Deduced parameters for good fits

	α	ζ	$\chi^2_{ u}$
NICER	45	46	1.41
(1–10 keV)	50	32	1.17
RXTE	45	48	1.73
(9.4–22.4 keV)	50	34	1.83
NuSTAR	45	48	3.03
(3–10 keV)	50	48	1.65

Emission geometry

- emission height $r/r_{\rm L} \in [0.2, 0.55]$.
- line of sight inclination agrees with γ -ray fit $\zeta \in [34^{\circ}, 48^{\circ}]$.

(Pétri et al., 2024)

- Emission sites and multi-wavelength atlas
- 3 Multi-wavelength pulse profile fitting
- Particle acceleration : Objectives & Methods
- 5 Application to a rotating dipole
- Conclusions & Perspectives

Université de Strasbourg

Physical challenges

- compute particle acceleration and radiation in a realistic environment.
- impact of radiation reaction on particle acceleration efficiency.
- follow accurately particle trajectories.

Methods

- design a particle pusher for ultra-strong fields based on analytical solutions of the equation of motion.
- long term task : a fully electromagnetic Particle-In-Cell (PIC) code for ultra-strong fields and ultra-relativistic particles.

Landau-Lifshitz equation

with 4-velocity u^i , electromagnetic tensor F^{ik} , particle charge and mass q, m, proper time τ

$$\frac{du^{i}}{d\tau} = \frac{q}{m} F^{ik} u_{k} + \frac{q \tau_{m}}{m} \partial_{\ell} F^{ik} u_{k} u^{\ell} + \frac{q^{2} \tau_{m}}{m^{2}} \left[F^{ik} F_{k\ell} u^{\ell} + (F^{\ell m} u_{m}) (F_{\ell k} u^{k}) \frac{u^{i}}{c^{2}} \right] \quad (1)$$

with the radiation damping time scale (for electrons)

$$\tau_m = \frac{q^2}{6\,\pi\,\varepsilon_0\,m\,c^3} = \frac{2}{3}\,\frac{r_e}{c} \approx 6.26 \times 10^{-24}\,\text{s.}$$
(2)

Two important parameters of the problem

strength parameter

$$a = \omega_{\rm B}/\Omega \gg 1$$

2 radiation damping parameter

$$b = \Omega \, \tau_m \ll 1$$

Emission : Objectives & Methods

- 2 Emission sites and multi-wavelength atlas
- 3 Multi-wavelength pulse profile fitting
- 4 Particle acceleration : Objectives & Methods
- Application to a rotating dipole
 - 6 Conclusions & Perspectives

Particle tracking around neutron stars

Inject charged particles and let them evolve.

- electron.
- proton.
- iron.

In the electromagnetic field of a neutron star

- millisecond pulsar : $B \sim 10^5 T$ and $a \sim 10^{13}$.
- normal pulsar : $B \sim 10^8 T$ and $a \sim 10^{18}$.
- magnetar : $B \sim 10^{11} T$ and $a \sim 10^{21}$.

Three kind of motion

- trapped.
- crashed.
- escaped.

Université

de Strash

Fig. – Rotating dipole field.

Particles escaping and crashing

📒 electron 📕 proton 📒 iron

🔲 electron 📕 proton 🔳 iron

🔲 electron 📕 proton 🔳 iron

Jérôme Pétri (ObAS)

Particles trapped around neutron stars

Fig. - 2D view of Earth Van Allen radiation belt.

Emission : Objectives & Methods

- 2 Emission sites and multi-wavelength atlas
- 3 Multi-wavelength pulse profile fitting
- 4 Particle acceleration : Objectives & Methods
- 5 Application to a rotating dipole
- 6 Conclusions & Perspectives

Time-aligned radio/X-ray/ γ -ray pulse profiles

- very efficient to constrain the geometry of the magnetic dipole.
- radio polarization reduces even more the uncertainties.
- non-thermal X-ray emission site between radio and γ -ray.
- determination of non-thermal X-ray emission altitude and extension.

Particle acceleration

- neutron stars are very efficient particle accelerators.
- in rotating neutron stars, particles with Lorentz factors up to 10^{12} .

Perspectives

- search for other good candidates seen in radio/X-ray/ γ -ray.
- compute multi-wavelength spectra up to TeV.
- redo the analysis with 3PC.
- implement the pusher into a PIC code.