Investigating coherent radio emissions from neutron star magnetospheres using kinetic plasma simulations

Jan Benáček University of Potsdam, Germany

In collaboration with: Axel Jessner, Andrey Timokhin, Lucy Oswald, Patricio Muñoz, Martin Pohl, Tatiana Rievajová Les Houches (France), 7.4.2025

Observations of coherent radio emissions for objects

Pulsar radio emission mechanism at kinetic microscales is uncertain

- Origin of radio emission and polarization?
- Which plasma processes?

Coherent curvature emission by solitons -> Part 1

(Melikidze+ 1980, Mitra 2017, Rahaman+ 2020, Manthei+ 2021, Benáček+ 2024a, ...)

- Polar cap pair discharges -> Part 2 (Ruderman+ 1975, Philippov+ 2020, Cruz+ 2020,2021, Benáček 2024b, Chernoglazov 2024)
- Linear acceleration emission

(Melrose+ 2009, 2017, Reville+ 2010, Benáček et al. 2023)

• Electron cyclotron maser

(Eilek+ 2016, Labaj, Benáček & Karlický 2024)

Relativistic plasma emission

(Eilek+ 2016, Melrose 2017, Benáček et al., in prep.)

3

- Conversion of Alfvén/Magnetoacoustic waves
- Coherent synchrotron
- Collisionless bremstrahlung
- Others

No evidence of soliton-like waves

We found that the solitary-like wave are formed in the pulsar **1D** plasma

No soliton-like waves appear in 2D

- No solitons are formed
- No coherent curvature radiation (from pulsar polar caps)

Radiatiation of pair cascades in polar caps

Poynting flux escapes along low-density mg. field lines

Benáček, Timokhin, Pohl, Büchner et al. (2024)

→ h_{gap} < r_{pc} « R_{star}
→ Inclinations 0°, 45°, 90°

8

Poynting flux escapes along low-density mg. field lines

Spectrum in the poynting flux channel

- Radio waves associated with discharges and located in open magnetic field lines of no pair discharges
- In plasma-filled field lines, radio wave absorption
- Radio waves can follow the channel until plasma density drops below critical density

Rotating vector model

Everett and Weisberg (2001)

Magnetospheric current across polar cap

Assuming: magnetic dipole with an inclination $\iota = 60^{\circ}$

Polarization profiles of radiation escaping polar cap

Benáček et al. (submitted)

Polarization profiles of radiation escaping polar cap

- ✓ Our model can reproduce
- 1. Total radio flux
- 2. One to three pulses
- 3. High linear polarization
- 4. Low circular polarization
- 5. PA swing (not following RVM)
- 6. Polarization degree decrease with increasing frequency
- 7. No radius-to-frequency mapping of generated waves

- X Could be interpreted by radiative transfer or non-dipolar components:
- 1. High circular polarizations
- 2. Orthogonal pulses
- 3. Pulse widening with increasing frequency
- 4. More than three pulses

- Polarization angle does not follow the RVM
- There is no radius-to-frequency mapping in wave emission/generation

Conclusions

- Pulsar radiation does not originate by coherent curvature radiation
- Our model can well reproduce several of observed parameters
- Poynting flux channels are formed in field lines of low plasma density
- Polarization does not follow RVM but is oriented along plasma density grandies

Papers on arXiv: 2309.15613 2405.20866 2503.17249 Jan Benáček:

0000-0002-4319-8083

