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 |ntroduction

e Main Themes:

1. Multiscale Complexity: 3D reconnection as nonlinear
interplay of 4 (at least!) instabilities

2. Job Security: magnetic reconnection in global context

3. Getting Things Going: onset of magnetic reconnection in
gradually forming current sheet

4. Obsession: Nonthermal Particle Acceleration (NTPA)

5. Extremism: radiative and QED reconnection in extreme
astrophysical environments

* Summary
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Introduction: Magnetic Reconnection

* Magnetic reconnection: rapid
rearrangement of magnetic
topology, breaking ideal-MHD.

* Reconnection requires magnetic
X-points inside thin intense
electric current sheets, where
ideal-MHD can be violated locally.

* Reconnection violently releases
maghnetic energy, converts it to:

— electron and ion heating
— bulk flow kinetic energy

— nonthermal particle
acceleration (NTPA)

— radiation




Traditional Magnetic Reconnection in
the Solar System

magnetic
reconnection &

flare ribbons
(adapted from Forbes & Acton, 1996)
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Relativistic Reconnection in Astrophysics

* Pulsar magnetospheres, winds, nebulae
* Black hole accretion disks & coronae

* Active galactic nuclei (AGN/ blazar) jets” |

powered by supermassive BHs
(producing CRs, PeV neutrinos, TeV y-ray flares)

« Gamma-Ray Bursts (GRBs)

exploding massive stars
or NS-NS mergers” - gravitational wave sources)

* Magnetar magnetospheres
(ultra-magnetized neutron stars: y-ray flares, FRBs)

£ 3
Multi-messenger Astrophysics!
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What’s inside the black box?

A

* Observations: t,,.~10L/V, = v, ~0.1v,,~ 0.1V,

* Astronomical systems are astronomically large: L >>> plasma kinetic scales

* Mass conservation: Lv,,=d v, = § ~ 0.1 L -- macroscopic!

* Reconnection requires breakdown of ideal MHD, which occurs on kinetic scales

 How does one bridge macroscopic reconnection region with microscopic kinetic
plasma scales?

* Hierarchical, perhaps self-similar, substructure involving broad range of scales
(a kind of turbulence)

[All this applies equally well to relativistic and nonrelativistic reconnection]

D. Uzdensky April 8, 2025 7



Extremely Simple Setup!

Extremely Simple Canonical (Symmetric) Reconnection Setup:
- 2D or 3D slab geometry

- Two identical upstream regions separated by thin current sheet

- Reversing reconnecting magnetic field B,

- Possibly a finite uniform “guide” out-of-plane magnetic field B,
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Reconnection as nonlinear evolution & interplay
of plasma instabilities in a thin current sheets

2D: Tearing (plasmoid) instability Large-system reconnection regime:
(Loureiro et al. 2007) self-similar hierarchical plasmoid chain
(Shibata & Tanuma ‘01, Loureiro et al. 2007,

Bhattacharjee et al. 2009, Uzdensky et al. 2010,
Loureiro et al. 2012)

Universal picture in all plasma regimes!
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Relativistic collisionless plasma (PIC): ‘D/\O/\Q/\O/\C $ On

e.g., Cerutti+ ’12-14, Sironi & Spitkovsky’14, Guo+ '14-16, Werner+’16-23,
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Reconnection as nonlinear evolution & interplay
of plasma instabilities in a thin current sheets

2D: (parallel currents attract) a) Tearing

e Tearing (plasmoid) instability:

formation of plasmoids (magnetic islands)

* Coalescence instability:

chaotic 1D motions of plasmoids along layer
and plasmoid mergers
(parasitic: secondary to tearing)

10
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Dvnamic Hierarchical Multiscale Plasmoid Chain in 2D
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Dynamic Hierarchical Multiscale Plasmoid Chain in 2D

—
2

(4) Reconnection betweenlnerging
plasmoids begets more plasmoids
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(3) Plasmoids grow
more by merging

(1) Tiny plasmoids form
as thin sheet tears

(2) Small plasmoids “grow
and go” (Sironi+2016)

Werner+2018




Reconnection as nonlinear evolution & interplay

of plasma instabilities in a thin current sheets

Does our 2D reconnection picture reflect what happens in nature?

3D.
* Drift-kink (DKI) instability:

- thin current-sheet kinks in the 39 direction
- primary instability I S
- two-fluid T e

- more important in

relativistic pair plasmas
- suppressed by strong

guide magnetic field B, (Zenitani & Hoshino 2008)
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* Flux-rope kink instability:

- ideal-MHD kink instability of flux ropes
(3D counterparts of plasmoids)

- parasitic: secondary to tearing

- also suppressed by strong guide field
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3D Relativistic %»1 Collisionless Reconnection
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Turbulent 3D Reconnection Laver




3D effects are more disruptive for moderately
relativistic reconnection (o,=1)
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3D: Reconnection --> “nonlinear evolution of a thin current sheet”
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SUMMARY

* Magnetic Reconnection is a fundamental nonlinear collective plasma process
governing energy conversion and powering high-energy flares in numerous
space/solar/astrophysical systems.

* In astronomically large systems (L >> d, ., p;.) reconnection becomes extremely
complex, even in simplest idealized configurations, developing dynamic multi-scale
hierarchical sub-structure.

* Dynamics is governed by nonlinear development and interplay by (at least) 4
instabilities:
—Two are 2D:
» Tearing: primary, nonideal — creates magnetic islands/plasmoids

» Coalescence: secondary (to tearing), ideal-MHD — drives plasmoid dynamics along
the layer

—Two are 3D (both suppressed by strong guide field):
 (Relativistic) Drift-Kink: primary, non-ideal — ripples the current sheet
* Flux-rope kink: secondary (to tearing), ideal-MHD — kinks flux ropes

* End result: highly structured, dynamic, turbulent mess!

THANK YOU!
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