
Wave Physics of Fast Radio Bursts

Feeling the pull and the pulse of relativistic magnetospheres, Les Houches, 05.04.2025.

Ethan van Woerkom The University of Helsinki

Image: J. Nättilä

Magnetar Star Quake Hypothesis

1. Magnetar starquake launches ~kHz frequency Alfvén/FMS Wave

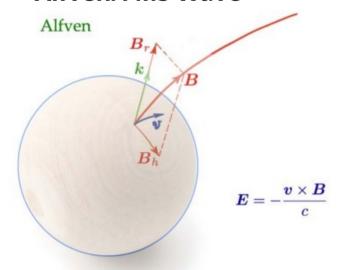
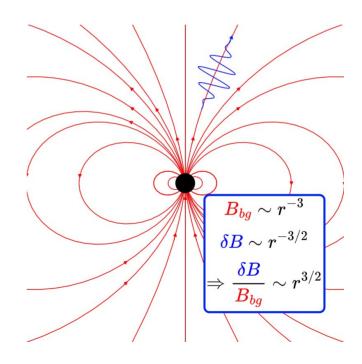



Image: Beloborodov (2023)

2. Alfvén/FMS Wave travels out and becomes nonlinear

Magnetar Star Quake Hypothesis

3. The wave steepens into a shock and triggers coherent emission of higher frequency ~GHz radio waves, e.g. through the synchrotron maser effect

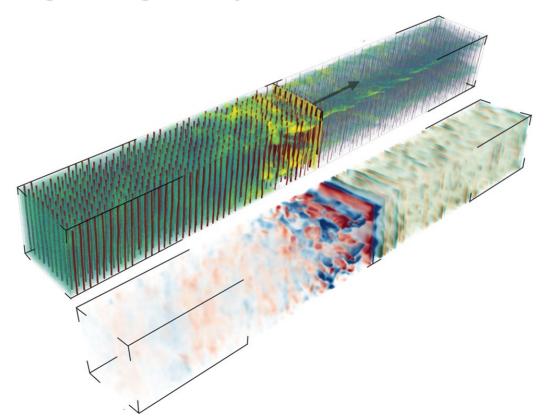
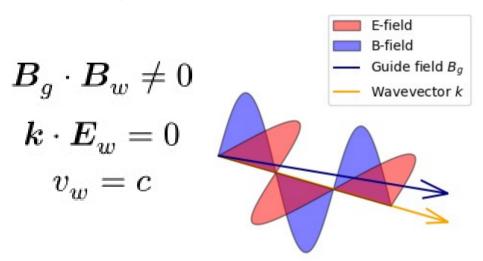
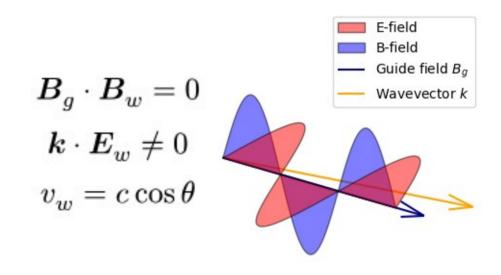




Image: J. Nättilä

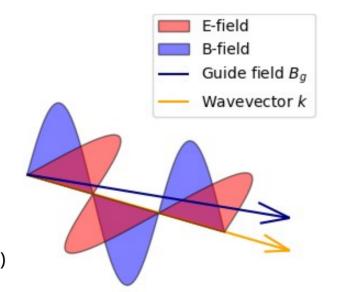
Fast Magnetosonic Wave (FMS)

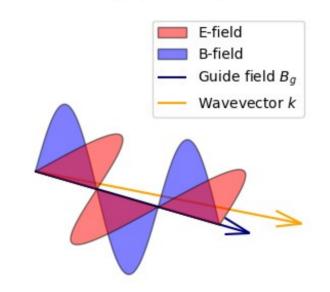
Alfvén Wave

 Both FMS and Alfvén waves can be excited in magnetar starquakes. See e.g. Yuan et al. (2020).

Parallel Alfvén Wave

$$m{k} \parallel m{B}_g, \ m{B}_g \perp m{B}_w \perp m{E}_w.$$

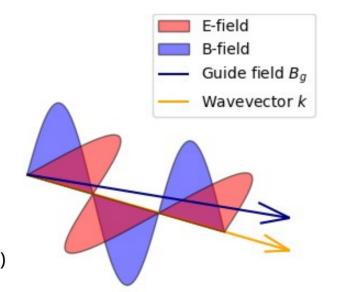

- FMS and Alfvén modes **become identical** if wave travels along guide field.
- Looks like an EM wave super-imposed on a field line.

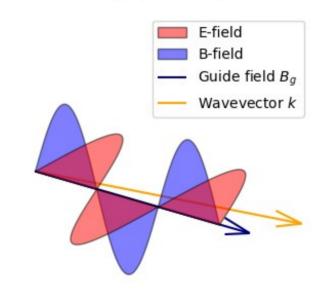

Fast Magnetosonic Wave (FMS)

• Can rapidly induce "monster shocks" once $|\mathbf{B}_w| > |\mathbf{B}_q|$ occurs

Alfvén Wave

• Cannot induce |B| > |E|even if $|B| \gg |E|$

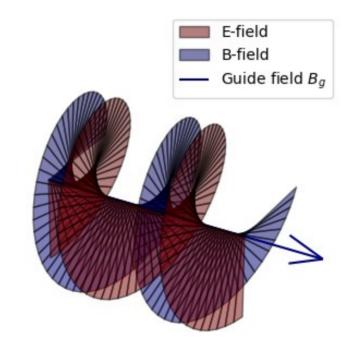

See Beloborodov (2023), Vanthieghem et al. (2025)


Fast Magnetosonic Wave (FMS)

• Can rapidly induce "monster shocks" once $|\mathbf{B}_w| > |\mathbf{B}_q|$ occurs

Alfvén Wave

• Cannot induce |B| > |E|even if $|B| \gg |E|$

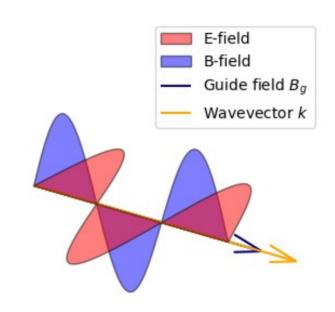


See Beloborodov (2023), Vanthieghem et al. (2025)

Can Alfvén Waves still cause shocks?

Circularly Polarised Alfvén Wave

Cannot steepen due to symmetry



See Mallet et al. (2023)

Can Alfvén Waves still cause shocks?

Parallel Alfvén Wave

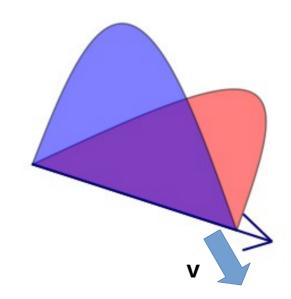
$$oldsymbol{k} \parallel oldsymbol{B}_g, \ oldsymbol{B}_g \perp oldsymbol{B}_w \perp oldsymbol{E}_w.$$

How to tackle this problem properly?

Low-frequency waves:

 Can be studied within the framework of Relativistic Magnetohydrodynamics (RMHD)

Ultra-Magnetised plasma:


 Solutions will be similar to as in Force Free Electrodynamics (FFED) (Uchida 1997, Kommissarov 2002).

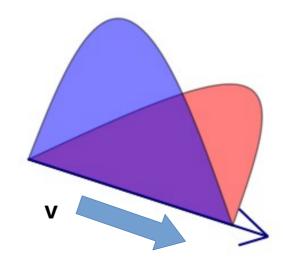
Particle-in-cell Simulations

 Only necessary to study the local shock structure, not necessary for studying shock formation as it is a global process.

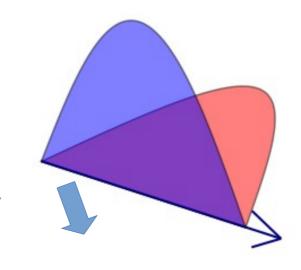

- Suppose pure E cross B motion of particles through an EM wave super-imposed on magnetic field line.
- We pass particles one-by-one through this wave

$$egin{align} oldsymbol{v} &= c rac{oldsymbol{E} imes oldsymbol{B}}{|oldsymbol{B}|^2} = rac{c}{1+f^2} egin{pmatrix} f^2 \ 0 \ -f \end{pmatrix}, \ &\gamma &= \sqrt{1+f^2}, \ &f &= |oldsymbol{B}_w| \; / \; |oldsymbol{B}_g|. \end{aligned}$$

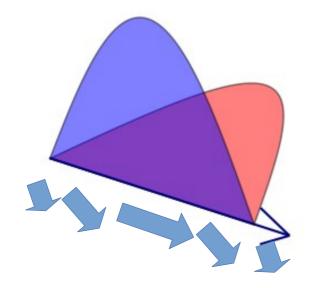
- Suppose pure E cross B motion of particles through an EM wave super-imposed on magnetic field line.
- We pass particles one-by-one through this wave

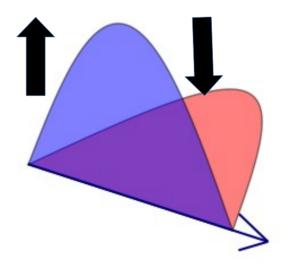

$$egin{align} oldsymbol{v} &= c rac{oldsymbol{E} imes oldsymbol{B}}{|oldsymbol{B}|^2} = rac{c}{1+f^2} egin{pmatrix} f^2 \ 0 \ -f \end{pmatrix}, \ &\gamma &= \sqrt{1+f^2}, \ &f &= |oldsymbol{B}_w| \; / \; |oldsymbol{B}_q|. \end{aligned}$$

- Suppose pure E cross B motion of particles through an EM wave super-imposed on magnetic field line.
- We pass particles one-by-one through this wave


$$\boldsymbol{v} = c \frac{\boldsymbol{E} \times \boldsymbol{B}}{|\boldsymbol{B}|^2} = \frac{c}{1+f^2} \begin{pmatrix} f^2 \\ 0 \\ -f \end{pmatrix},$$

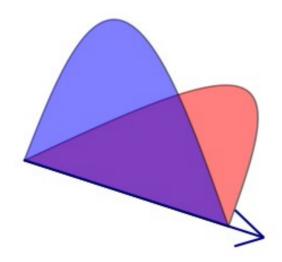
$$f = |oldsymbol{B}_w| / |oldsymbol{B}_g|.$$




- Suppose pure E cross B motion of particles through an EM wave super-imposed on magnetic field line.
- We pass particles one-by-one through this wave

$$egin{align} oldsymbol{v} &= c rac{oldsymbol{E} imes oldsymbol{B}}{|oldsymbol{B}|^2} = rac{c}{1+f^2} egin{pmatrix} f^2 \ 0 \ -f \end{pmatrix}, \ & \gamma &= \sqrt{1+f^2}, \ & f &= |oldsymbol{B}_w| \; / \; |oldsymbol{B}_q|. \end{aligned}$$

- In this way, electromagnetic energy is taken from front of wave and deposited in the back.
- Wave amplitude will decrease at front, decrease at back
- Wave "falls over" and steepens into a shock



Wave Steepening Distance: Upper Bound

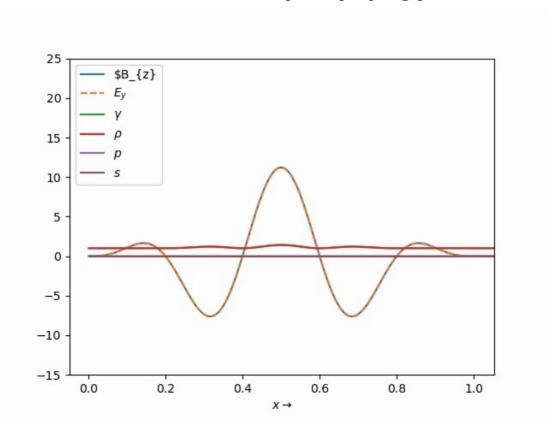
• For peak to catch-up with trough, wave must travel:

$$L = \frac{\text{Wave Energy}}{\text{Energy lost per meter travelled}} = \frac{f^2 \sigma_g \rho_0 c^2 W}{\rho_0 c^2 \left(\sqrt{1+f^2}-1\right)} \approx \sigma_g f W$$

One Flaw In This Analysis

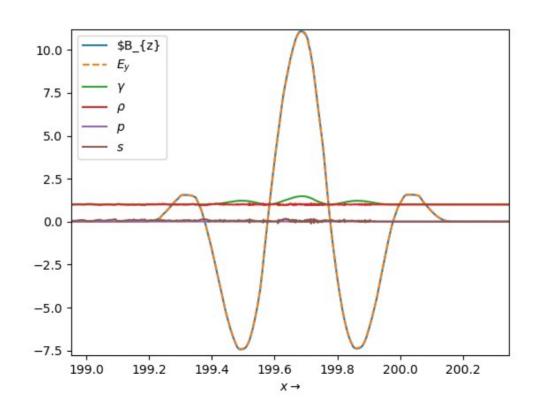
 The E cross B motion is not pure: we neglected motion parallel to the magnetic field.

$$\begin{split} \frac{Dp_{\parallel}}{Dt} &= \frac{D}{Dt} \Big(\boldsymbol{p}_{\mathrm{fluid}} \cdot \hat{\boldsymbol{B}} \Big) \\ &= (\nabla \cdot \boldsymbol{v}) p_{\parallel} - \Big(\hat{\boldsymbol{B}} \cdot \nabla \Big) p_{\parallel} + \hat{\boldsymbol{c}} \cdot \boldsymbol{p}_{\perp}. \end{split}$$

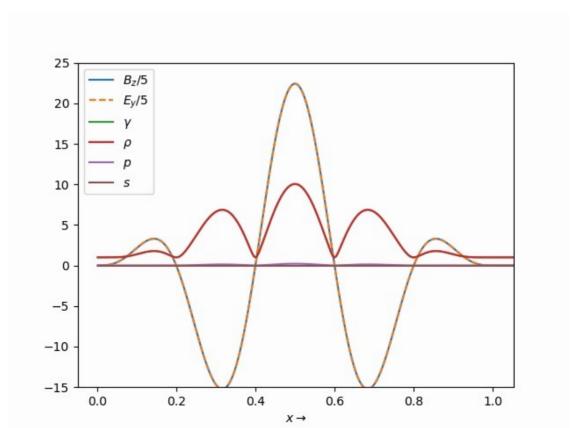

 Fully capturing this effect requires a complete analysis of RMHD equations, more on this later.

RMHD Simulation with AthenaK

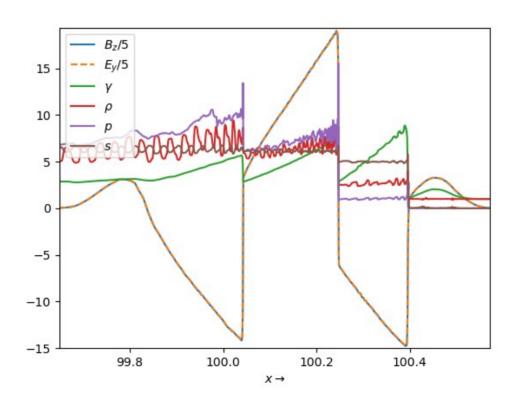
- Used AthenaK RMHD code (Stone et al. 2024)
- Set up a 1D problem with nonlinear parallel Alfvén wavepacket.
- Pressure: 1% of rest mass density, EOS: y = 4/3.
- "Race track" of 200 wavepackets long.
- 131072 cells, 6 AMR Levels


RMHD Simulation (1)

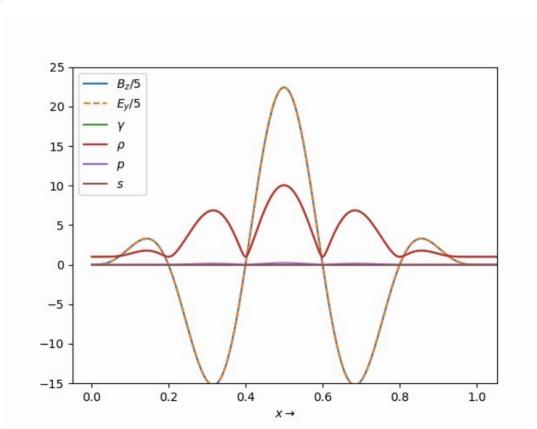
Mildly Nonlinear: $\sigma = 10$, $f = |B_w|/|B_g| = 1$.


RMHD Simulation (1)

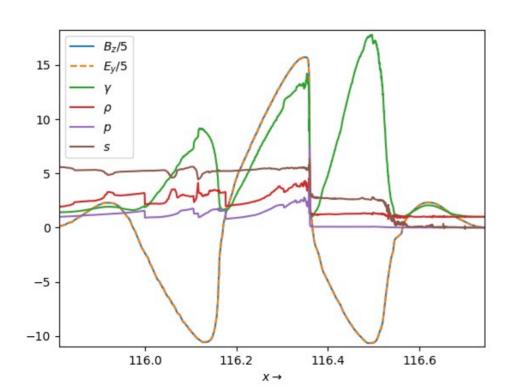
Mildly Nonlinear: $\sigma = 10$, $f = |B_w|/|B_g| = 1$.


RMHD Simulation (2)

Strongly Nonlinear: $\sigma = 10$, $f = |B_w|/|B_g| = 10$.


RMHD Simulation (2)

Strongly Nonlinear: $\sigma = 10$, $f = |B_w|/|B_g| = 10$.


RMHD Simulation (3)

More Magnetised: $\sigma = 20$, $f = |B_w|/|B_g| = 10$.

RMHD Simulation (3)

More Magnetised: $\sigma = 20$, $f = |B_w|/|B_g| = 10$.

Parallel Alfvén waves can steepen into shocks

- We have developed an analytical treatment describing this process in the limit $\sigma >> 1$: Woerkom & Nättilä (in prep.)
- This treatment can be extended to oblique Alfvén waves and fast magnetosonic waves.

Question:

The shock discontinuity will be of type "**Alfvén Shock**", cf. Lichnerowicz (1967).

Why is the literature essentially silent on Alfvén shocks?